Dictionary learning based sinogram inpainting for CT sparse reconstruction

Abstract : In CT (computed tomography), reconstruction from undersampling projection data is often ill-posed and suffers from severe artifact in the reconstructed images. To overcome this problem, this paper proposes a sinogram inpainting method based on recently rising sparse representation technology. In this approach, a dictionary learning based inpainting is used to estimate the missing projection data. The final image can be reconstructed by the analytic filtered back projection (FBP) reconstruction. We conduct experiments using both simulated and real phantom data. Compared to the comparative interpolation method, visual and numerical results validate the clinical potential of the proposed method.
Type de document :
Article dans une revue
optik- International Journal for Light and Electron Optics, 2014, 125 (12), pp.2862-2867. 〈10.1016/j.ijleo.2014.01.003〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00955275
Contributeur : Lotfi Senhadji <>
Soumis le : mardi 4 mars 2014 - 11:05:39
Dernière modification le : vendredi 23 mars 2018 - 14:00:45
Document(s) archivé(s) le : mercredi 4 juin 2014 - 11:00:17

Fichier

Dictionary_Learning_Based_Sino...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Si Li, Yang Chen, Limin Luo, Christine Toumoulin. Dictionary learning based sinogram inpainting for CT sparse reconstruction. optik- International Journal for Light and Electron Optics, 2014, 125 (12), pp.2862-2867. 〈10.1016/j.ijleo.2014.01.003〉. 〈inserm-00955275〉

Partager

Métriques

Consultations de la notice

729

Téléchargements de fichiers

484