K. Budde, S. Bauer, P. Hambach, U. Hahn, H. Roblitz et al., Pharmacokinetic and Pharmacodynamic Comparison of Enteric-Coated Mycophenolate Sodium and Mycophenolate Mofetil in Maintenance Renal Transplant Patients, American Journal of Transplantation, vol.44, issue.4, pp.888-898, 2007.
DOI : 10.1097/00007890-199609150-00022

P. Hager, F. Collart, E. Huberman, and B. Mitchell, Recombinant human inosine monophosphate dehydrogenase type I and type II proteins, Biochemical Pharmacology, vol.49, issue.9, pp.1323-1329, 1995.
DOI : 10.1016/0006-2952(95)00026-V

N. Picard, D. Ratanasavanh, A. Premaud, L. Meur, Y. Marquet et al., IDENTIFICATION OF THE UDP-GLUCURONOSYLTRANSFERASE ISOFORMS INVOLVED IN MYCOPHENOLIC ACID PHASE II METABOLISM, Drug Metabolism and Disposition, vol.33, issue.1, pp.139-146, 2005.
DOI : 10.1124/dmd.104.001651

O. Bernard and C. Guillemette, THE MAIN ROLE OF UGT1A9 IN THE HEPATIC METABOLISM OF MYCOPHENOLIC ACID AND THE EFFECTS OF NATURALLY OCCURRING VARIANTS, Drug Metabolism and Disposition, vol.32, issue.8, pp.775-778, 2004.
DOI : 10.1124/dmd.32.8.775

O. Bernard, J. Tojcic, K. Journault, L. Perusse, and C. Guillemette, Influence of Nonsynonymous Polymorphisms of UGT1A8 and UGT2B7 Metabolizing Enzymes on the Formation of Phenolic and Acyl Glucuronides of Mycophenolic Acid, Drug Metabolism and Disposition, vol.34, issue.9, pp.1539-1545, 2006.
DOI : 10.1124/dmd.106.010553

O. Gensburger, N. Picard, and P. Marquet, Effect of Mycophenolate Acyl-Glucuronide on Human Recombinant Type 2 Inosine Monophosphate Dehydrogenase, Clinical Chemistry, vol.55, issue.5, pp.986-993, 2009.
DOI : 10.1373/clinchem.2008.113936

R. Bullingham, A. Nicholls, and B. Kamm, Clinical Pharmacokinetics of Mycophenolate Mofetil, Clinical Pharmacokinetics, vol.34, issue.6, pp.429-455, 1998.
DOI : 10.2165/00003088-199834060-00002

C. Patel, K. Ogasawara, and F. Akhlaghi, Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus, Xenobiotica, vol.26, issue.3, pp.229-235, 2013.
DOI : 10.1124/dmd.105.006122

I. Westley, L. Brogan, R. Morris, A. Evans, and B. Sallustio, ROLE OF MRP2 IN THE HEPATIC DISPOSITION OF MYCOPHENOLIC ACID AND ITS GLUCURONIDE METABOLITES: EFFECT OF CYCLOSPORINE, Drug Metabolism and Disposition, vol.34, issue.2, pp.261-266, 2006.
DOI : 10.1124/dmd.105.006122

N. Picard, S. Yee, J. Woillard, Y. Lebranchu, L. Meur et al., The Role of Organic Anion???Transporting Polypeptides and Their Common Genetic Variants in Mycophenolic Acid Pharmacokinetics, Clinical Pharmacology & Therapeutics, vol.87, issue.1, pp.100-108, 2010.
DOI : 10.1086/379378

URL : https://hal.archives-ouvertes.fr/inserm-00415314

N. Picard and P. Marquet, The influence of pharmacogenetics and cofactors on clinical outcomes in kidney transplantation, Expert Opinion on Drug Metabolism & Toxicology, vol.35, issue.3, pp.731-743, 2011.
DOI : 10.1073/pnas.0506483102

URL : https://hal.archives-ouvertes.fr/inserm-00577136

K. Barraclough, K. Lee, and C. Staatz, Pharmacogenetic influences on mycophenolate therapy, Pharmacogenomics, vol.11, issue.3, pp.369-390, 2010.
DOI : 10.2217/pgs.10.9

M. Naesens, D. Kuypers, K. Verbeke, and Y. Vanrenterghem, Multidrug Resistance Protein 2 Genetic Polymorphisms Influence Mycophenolic Acid Exposure in Renal Allograft Recipients, Transplantation, vol.82, issue.8, pp.1074-1084, 2006.
DOI : 10.1097/01.tp.0000235533.29300.e7

P. Jacobson, D. Schladt, W. Oetting, R. Leduc, W. Guan et al., Genetic Determinants of Mycophenolate-Related Anemia and Leukopenia After Transplantation, Transplantation, vol.91, issue.3, pp.309-316, 2011.
DOI : 10.1097/TP.0b013e318200e971

A. Thierry, G. Mourad, M. Buchler, N. Kamar, F. Villemain et al., Steroid avoidance with early intensified dosing of enteric-coated mycophenolate sodium: a randomized multicentre trial in kidney transplant recipients, Nephrology Dialysis Transplantation, vol.27, issue.9, pp.3651-3659, 2012.
DOI : 10.1093/ndt/gfs146

S. Knight and P. Morris, The Clinical Benefits of Cyclosporine C2-Level Monitoring: A Systematic Review, Transplantation, vol.83, issue.12, pp.1525-1535, 2007.
DOI : 10.1097/01.tp.0000268306.41196.2c

S. Stern, M. Tallman, K. Miles, J. Ritter, R. Dupuis et al., Gender-Related Differences in Mycophenolate Mofetil-Induced Gastrointestinal Toxicity in Rats, Drug Metabolism and Disposition, vol.35, issue.3, pp.449-454, 2007.
DOI : 10.1124/dmd.106.012013

G. Ciancio, G. Burke, J. Gaynor, D. Roth, J. Sageshima et al., Randomized Trial of Mycophenolate Mofetil Versus Enteric-Coated Mycophenolate Sodium in Primary Renal Transplant Recipients Given Tacrolimus and Daclizumab/Thymoglobulin: One Year Follow-Up, Transplantation, vol.86, issue.1, pp.67-74, 2008.
DOI : 10.1097/TP.0b013e3181734b4a

N. Picard, T. Cresteil, A. Premaud, and P. Marquet, Characterization of a Phase 1 Metabolite of Mycophenolic Acid Produced by CYP3A4/5, Therapeutic Drug Monitoring, vol.26, issue.6, pp.600-608, 2004.
DOI : 10.1097/00007691-200412000-00004