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Abstract:  This paper describes a novel algorithm to encrypt double color images into a 
single undistinguishable image in quaternion gyrator domain. By using an iterative phase 
retrieval algorithm, the phase masks used for encryption are obtained. Subsequently, the 
encrypted image is generated via cascaded quaternion gyrator transforms with different 
rotation angles. The parameters in quaternion gyrator transforms and phases serve as 
encryption keys. By knowing these keys, the original color images can be fully restituted. 
Numerical simulations have demonstrated the validity of the proposed encryption system as 
well as its robustness against loss of data and additive Gaussian noise. 

 

1. Introduction 

The image encryption technique, by its capability to ensure the security of information 
transmission and communication, has attracted a growing attention since the double random 
phase encoding technique was proposed by Refregier and Javidi [1] in 1995. In general, the 
input image is encrypted into an undistinguishable image and decrypted when received with 
the proper granted keys. In the past decades, various optical or digital encryption algorithms 
for gray images have been developed [1-4]. Some advanced techniques of optical encryption 
have emerged lately, such as the spatially incoherent image encryption system [5], 
ptychography based encryption [6] as well as asymmetric cryptosystem using random binary 
phase modulations [7]. Furthermore, a new and effective optical system using phase 
modulation with sparse representation was reported in [8], which achieves higher security by 
employing optical authentication method. 

Color images remain however of major importance in many applications [9, 10]. Zhang 
and Karim [11] were the first to introduce a single-channel encryption algorithm for color 
image using double random phase encoding in the Fourier domain. Multiple channels 
encryption algorithms for color image were meanwhile investigated by applying the existing 
encryption algorithms for gray image on the red, green and blue channels independently. 
They make use, for example, of Fresnel transform [12], fractional Fourier transform [13, 14] 
or gyrator transform [15, 16]. Based on the quaternion theory [17], recent works introduced 
color image encryption algorithms in a fully vectorial form. They rely on the discrete 
quaternion Fourier transform [18] and the quaternion gyrator transform [19], respectively. 
The interest of the quaternion gyrator transform is that the presence of rotation angle enlarges 
the keys space and thus enhances the system security. 

In addition to the aforementioned encryption algorithms for single gray or color image, 
multiple-image encryption algorithm capable to fuse more than one target image into a single 
illegible image has attracted great interest [20-37]. The superiority of multiple-image 
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encryption relies on the minimization of storage requirements for secret data and the 
improvement in transmission efficiency. Although the previous encryption algorithms for 
single gray or color image can be directly used for successive encryption of multiple images, 
the cost and the complexity of such systems will be expected to significantly increase. The 
drawbacks of such approach have been discussed for the double random phase (DRP) 
encoding technique in [25]. To surmount these deficiencies, advanced encryption algorithms 
for multiple images have been proposed these last years. By combining the iterative Fourier 
transform algorithm with the classical double random phase encryption system, Alfalou and 
Mansour [25] proposed a two level encryption/decryption system to encode multiple images. 
Meanwhile, the iterative phase retrieval algorithm for gray or binary images associated or not 
with other techniques in Fresnel transform domain [21-24], fractional Fourier transform 
domain [28-35] as well as in gyrator transform domain [36, 37] were also intensively 
investigated. The fractional Fourier transform is widely used due to the fact that its parameter, 
the fractional order, enlarges the key space. In contrast, the gyrator transform has not received 
so far much attention and in particular for image encryption. 

Throughout the literature, however, there are few studies focused on the encryption 
algorithm for double or multiple color images. An encryption algorithm for double color 
images implemented in the fractional Fourier domain was reported in [34], where two color 
images were in a first step converted into their indexed formats, a data matrix and a colormap 
matrix. Afterwards, the encryption is implemented on both data matrices. In most cases, such 
method will degrade the quality of the restituted images due to the approximation made in the 
transformation between the RGB color space and its indexed format. The same 
pre-processing strategy was used for four color images encryption scheme in [35], this 
encryption being carried out through cascaded fractional Fourier transforms. 

In this paper, our main objective is the design of a double color image encryption algorithm 
based on quaternion algebra. The rest of the paper is organized as follows. Section 2 briefly 
reviews the main features of quaternions and quaternion gyrator transform (QGT) for 
describing color images. In section 3, the algorithm for encryption and decryption of double 
color images in quaternion gyrator domain is described. Numerical simulations are reported 
in section 4 to demonstrate the performance of the proposed solution. Some conclusions are 
drawn in section 5. 

2. Quaternions and Quaternion gyrator transform 

2.1 Quaternions 

A quaternion number can be written as: q a ib jc kd= + + + , where a, b, c, d are real 
numbers and i, j, k are orthogonal imaginary parts obeying the following rules: 
2 2 2 1i j k= = = ! , ij ji k= ! = , jk kj i= ! = , ki ik j= ! = . Any quaternion q can also be 

rewritten as: ( ) ( )q a ib c id j= + + + . It must be noticed that the quaternion multiplication is 
non-exchangeable. The conjugate of q is: q a ib jc kd= ! ! ! . When 0a = , q becomes a 
pure quaternion. The quaternion q can also be expressed in polar form as: Iq q e != , where 

the norm is 2 2 2 2q a b c d= + + + , with 
2 2 2

ib jc kdI
b c d
+ +=
+ +

 and 
2 2 2

1tan b c d
a

! "
# $+ +% &= % &' (

 

representing the eigenaxis and the eigenangle, respectively. 
An RGB image f(x, y) can be represented by a pure quaternion matrix as 

( , ) ( , ) ( , ) ( , ).R G Bf x y if x y jf x y kf x y= + +                    (1) 

where the subscripts {R, G, B} represent the color components of the image. Based on the 
quaternion representation, each color pixel is encoded as a pure quaternion, thus the 
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correlations between them can be effectively preserved. 

2.2 Quaternion gyrator transform 

The gyrator transform, with rotation angle !, has been introduced by Rodrigo et al. in the 
field of optics [38]. Some applications have been already reported for image encryption and 
specific noise reduction [15, 16, 36-39]. Like the fractional Fourier transform, the gyrator 
transform belongs to a class of linear canonical integral transform and can be viewed as an 
extension of the Fourier analysis. Its advantage is also to enlarge the key space and 
consequently strengthen the system security. The traditional gyrator transform for gray image 
can be extended to quaternion domain for describing color image. 

Due to the non-commutative property of quaternion multiplication, the right-side 
quaternion gyrator transform (QGT) with rotation angle ! is defined as [19] 

1 ( )cos ( )[ ( , )]( , ) ( , )exp 2
sin sin

uv xy uy vxQG f x y u v f x y dxdy! !µ "
! !

+ # +$ %= & '( )**     (2) 

where µ is a pure unit quaternion and ( ) 3i j kµ = + +  is chosen in this paper. For ! = "/2, 
the right-side of Eq. (2) reduces to the right-side quaternion Fourier transform with the 
rotation of coordinates at "/2; for ! = 3"/2, to the inverse quaternion Fourier transform with 
the rotation of coordinates at "/2. The inverse quaternion gyrator transform corresponds to the 
QGT at angle !" . The implementation of QGT is achieved through two left-side quaternion 
Fourier transforms (for more details about quaternion Fourier transform and quaternion 
gyrator transform, refer to [19, 40]). 

3. Principle of encryption and decryption 

Encryption algorithms using iterative phase retrieval technique for double gray images have 
been reported in [28, 37]. They consist of a series of forward and backward iterations. To deal 
with double color images, three groups of gray images (the color image is decomposed into 
red, green and blue channels and each component is viewed as a gray image) will be 
respectively encrypted. However, this approach does not make use of the inter-relationships 
between color components. It also leads to three times larger iteration loops and phase 
functions (e.g. the phase functions will go up to 12). Obviously, this can be a serious 
handicap for modern applications. Here, a novel encryption algorithm for double color 
images is proposed by combining the iterative phase retrieval algorithm with quaternion 
gyrator transform. 

3.1 Description of the proposed algorithm 

Without loss of generality, suppose that f(x, y) and g(x, y) be two color images to be 
encrypted, and h(x, y) the ciphertext image. The phase functions 1! , 2! , 1! , 2!  and !  
are distributed in the interval [0,2 ]! , and assume that the following relationship between the 
images and the phases holds 

2 1

2 1

11 1 12 2

21 1 22 2

exp( ) { { exp( )}exp( )}

{ { exp( )}exp( )}

h G G f

G G g

! !

" "

#$ µ % µ %
µ & µ &

=

=
                   (3) 

where µ11, µ12, µ21, and µ22 are the unit pure quaternions and the five phase functions are 
unknown at the beginning. With the expression in Eq. (3), the information of both color 
images can be hidden into the single image h. Hereinafter, an iterative phase retrieval 
algorithm is used to obtain the phase functions 1! , 2! , 1!  and 2! . According to Eq. (3), 
the following formula can be derived 

1 2 2 1
21 1 11 1 12 2 22 2exp( ) { { { { exp( )}exp( )}}exp( )}.g G G G G f! ! " "µ # µ $ µ $ µ #% %= %       (4) 
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  At the initialization stage, 1
1! , 1

2! , 1
2!  distributed in [0,2 ]!  are randomly generated. 

After n-th iteration, with the known of the phase functions 1
n! , 2

n!  and 2
n! , we define 

1 2 2 1
11 1 12 2 22 2ˆ { { { { exp( )}exp( )}}exp( )}.n n n ng G G G G f! ! " " µ # µ # µ $% %= %           (5) 

Then, the phase 1
n!  can be determined by 

1 ˆarg{ }n ng g! = "                              (6) 
where g  is the conjugate of g, and arg{!} denotes the phase extraction operator. 

Subsequently substituting the phase function 1
n!  into Eq. (4), the functions 1

2
n! + , 1

2
n! + , 

1
1
n! +  in the next iteration are updated as belows, 

2 2 1

1

1
2 11 1 12 2

21 1

1arg { { { exp( )}exp( )}}
{ exp( )}

n n n
n G G G f

G g
! " "

!# µ $ µ $
µ #

%+ & '
= ( )

* +
       (7) 

2 2 1

1

1 1
2 21 1 22 2

11 1

1arg { { { exp( )}exp( )}}
{ exp( )}

n n n
n G G G g

G f
! " "

!# µ $ µ $
µ #

%+ +& '
= ( )

* +
      (8) 

{ }1 2 2 11 1 1
1 21 1 22 2 12 2arg { { { { exp( )} exp( )}} exp( )}n n n nf G G G G g! ! " "# µ $ µ $ µ #% %+ + += & & & & %    (9) 

To evaluate the quality of the recovered color image with respect to the reference one and 
also to end the iteration, the correlation coefficient (CC) in color space is used 

2 2
{ , , }

{[ ( )][ ( )]}
.

3 {[ ( )] } {[ ( )] }

n n
c c c c

n n
c R G B c c c c

E g E g g E g
CC

E g E g E g E g!

" "
=

" "
#               (10) 

where n
cg  denotes the R, G, B channels of the recovered color image at the n-th iteration 

step, and E{·} the expected value operator. Once the CC value, selected as the convergence 
criterion, reaches a predefined threshold, then the iteration process stops. 

Finally, the optimized four phases are obtained as follows 
1

1 1 2 2 1 1 2 2, , , .n n n n! ! ! ! " " " "#= = = =                       (11) 
According to Eq. (3), the final encrypted image h(x, y) is obtained by the cascaded QGT 

performed on color image f(x, y) with rotation angles !1, !2 and phase functions 1! , 2!  as 
2 1

11 1 12 2{ { exp( )}exp( )}h G G f! ! µ " µ "=                      (12) 
Alternatively, it can be achieved by the cascaded QGT performed on color image g(x, y) with 
rotation angles #1, #2 and phase functions $1, $2 as 

2 1
21 1 22 2{ { exp( )}exp( )}h G G g! ! µ " µ "=                      (13) 

As pointed in [25], a perfect encryption algorithm should parallel a decryption algorithm to 
allow us retrieving the secret information by means of the granted keys as a receiver. In other 
words, the encryption algorithm should be reversible. In the proposed encryption algorithm, 
the accompanied phase function % can be considered as the public key. The rotation angles !1, 
!2 and the phase masks 1! , 2!  are private keys for recovering the color image f(x, y), while 
the angles #1, #2 and the phase masks $1, $2 are private keys for recovering the color image 
g(x, y). The parameters µ, µ11, µ12, µ21, µ22 can be viewed as auxiliary keys. With the above 
known essential keys, the two target color images f(x, y) and g(x, y) can be restituted by 
implementing the inverse encryption algorithm process as follows 

 1 2
12 2 11 1{ { exp( )}exp( )}exp( ).f G G h! ! "# µ $ µ $% %= % %                   (14) 

  1 2
22 2 21 1{ { exp( )}exp( )}exp( ).g G G h! ! "# µ $ µ $% %= % %                  (15) 
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3.2 Complexity analysis 

The computational complexity of the proposed encryption algorithm will be analyzed next. It 
depends on two main factors. First, to extract each phase function in the n-th loop, the 
quaternion gyrator transform and its inverse transform must be computed four times. Here, 
the left-side quaternion Fourier transform is obtained via the 2D fast complex-valued Fourier 
transform [40] and introduced into the calculation of quaternion gyrator transform. For an 
image with size M " N, the computation complexity of the 2D fast Fourier transform has been 
shown to be 2( log )MN MN!  [23]. The second factor is the number of iterations. It has 
been set to 1000 in all experiments, a value considered as a good balance between time 
computation and accuracy in image recovery. In short, the computation load depends largely 
upon the image size and the iteration number. 

4. Numerical simulation results 

To corroborate the validity and the effectiveness of the proposed encryption algorithm, 
numerical simulations were carried out on a computer with Intel Core2 Duo CPU 
E8400@3.00GHz and 3G DRAM and with the MATLAB 2011a. The tested color images 
selected from USC-SIPI image database [41] consist of four groups as shown in Fig. 1, all 
with size 256"256. The system parameters are ( ) 2lm i kµ = + (l, m = 1, 2), !1=0.16, 
!2=0.25, #1=0.21, #2=0.45 (other values can be selected). The normalized mean square error 
(NMSE) [12, 36] were used to evaluate the similarity between the decrypted image ˆ( , )f x y  
and its reference f(x, y), which is defined by 

1 1 2

0 0
1 1

2

0 0

ˆ( , ) ( , )
NMSE .

( , )

N M

x y
N M

x y

f x y f x y

f x y

! !

= =
! !

= =

!
=
""

""
                       (16) 

Simulations have been done first to test the security and the reversibility of the algorithm. 
The four phase functions for each tested group were obtained after 1000 iteration loops. The 
evolution of CC values is displayed in Fig. 2, where the images in the upper row and the 
lower row for each tested group shown in Fig. 1 are respectively used as the reference image 
to terminate the iteration in the phase retrieval process. Table 1 lists the NMSE values of 
decrypted images, where all the images in the lower row are used as reference image to 
obtain the four phases. It should be noted that for any tested group, four sets of decrypted 
results can be obtained due to the fact that each of them can be used as the reference to 
determine the convergence or for encryption. From the results of table 1, it can be observed 
that for each tested group, the error of the first decrypted image is larger due to the fact that 
the encypted data h obtained from the second tested image g(x, y) is used as the public keys. 
When using Eq. (12), the error of the second decrypted image will be larger which is caused 
by the smaller residual error when obtaining phase functions by means of the phase retrieval 
algorithm. Figure 3 shows the results of encryption and granted decryption of the first tested 
group (Lena and Pepper). It can be seen that with the knowledge of the granted keys, the 
original color images can be restituted with a high quality. In contrast, without knowing the 
rotation angles or phase functions, almost no useful information can be recovered from the 
decrypted results, as demonstrated in Fig. 4. 
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Fig. 1. Tested color images: each column constitutes a tested group (Primary color images are 
selected from USC-SIPI image database). 

 
Table 1. NMSE values of decrypted images with granted keys 

Images Fig. 1 
(a) 

Fig. 1 
(b) 

Fig. 1 
(c) 

Fig. 1 
(d) 

Fig. 1 
(e) 

Fig. 1 
(f) 

Fig. 1 
(g) 

Fig. 1 
(h) 

NMSE 1.59e-2 3.74e-30 3.36e-2 3.67e-30 2.32e-2 3.64e-30 4.38e-2 3.59e-30 

 

 
Fig. 2. The evolution of CC values over the 1000 iteration loops. 
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Fig. 3. Examples of encryption and granted decryption for double color images: (a) encrypted 
image; (b) and (c), decrypted results. 

 

 
Fig. 4. Decrypted results with randomly guessed keys: (a) and (b) correspond to Lena, (c) and 
(d) correspond to Pepper: (a) and (c) correspond to phases randomly guessed, (b) and (d) 
correspond to angles randomly guessed. 

 
In order now to test the sensitivity of rotation angles to small changes, the decryption was 

performed by fixing one angle value and by varying the other, where the deviation # ranges 
from -0.10 to 0.10 with step 0.005. Others keys used for encryption and decryption in this 
simulation are set to the correct values. From the NMSE values shown in Fig. 5, it can be 
concluded that when the deviation is equal or greater than 0.01, the decrypted images (for 
brevity not displayed here) cannot be recognized clearly. Therefore, the rotation angles of 
QGT are sensitive keys. 

 
Fig. 5. The NMSE values of decrypted images when varying one rotation angle while the other 
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keys are set to the right value. 

 
Fig. 6. The NMSE values of decrypted images with different information loss severities. 

 

Fig. 7. Decrypted results of encrypted data with 50% information loss. 
 

During data transmission, information loss or noise contamination may occur. Another 
simulation was carried out so as to evaluate the performance of the proposed encryption 
algorithm against loss of data. To demonstrate the interest of the present encryption algorithm 
for double color images, a comparison with the encryption algorithm based on fractional 
Fourier transforms (FrFT) [34] is provided. To do so, the information loss severity p (varying 
from 10% to 60% with an increment 10%) around the center is regarded as an occlusion 
attack to the encrypted data. From the results illustrated in Fig. 6, it can be seen that the 
NMSE values of the FrFT-based encryption algorithm are more stable. However, the NMSE 
values of the present algorithm evolve linearly with the percentage p. When increasing the 
occlusion percentage p, the similarity between recovered image and its original one becomes 
obviously smaller. This behavior can be explained by the fact that a significant part of the 
QGT information is distributed around the image center considered as the origin. Although 
the NMSE values of the FrFT-based encryption algorithm are smaller in some limited 
intervals, we found that no useful information can be recovered from the decrypted image 
even when the smallest occlusion percentage 10% is used in reduplicative experiments. 
Conversely, as displayed in Fig. 7, relevant decrypted information can be obtained when 
using the proposed algorithm for p values up to 50%. In other words, the proposed encryption 
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algorithm shows more robustness against loss of encrypted data. 

 
Fig. 8. The NMSE values of decrypted images with different Gaussian white noise using 
different encryption algorithms. 

 
Fig. 9. Examples of decrypted images from noisy encrypted data with standard deviation 0.05. 

 
In order to test the robustness of our approach against noise attack, a white Gaussian noise 

with zero mean and varying standard deviations & was added to the four tested group images. 
The same noise was added to the encrypted images obtained with fractional Fourier 
transforms [34] for comparison purpose. Fig. 8 displays the NMSE values of the decrypted 
images from these noisy encrypted images with the FrFT-based and the QGT-based 
encryption algorithm. The NMSE values corresponding to the proposed algorithm are much 
smaller. Two examples of the resulting decrypted images are shown in Fig. 9, where the noise 
standard deviation is 0.05. It can be concluded that the proposed encryption algorithm shows 
here also more robustness against noise. 

5. Conclusion 

A novel double color image encryption algorithm was presented in this paper. The originality 
stands on the holistic representation for color image by using quaternion algebra and iterative 
phase retrieval algorithm in quaternion gyrator domain. The phase masks used for encryption 
are obtained through iterative phase retrieval algorithm in quaternion gyrator domain, and the 
encrypted image is obtained via cascaded quaternion gyrator transforms. Knowing all the 
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granted keys, as the parameters of quaternion gyrator and phases, two color images can be 
restituted with a high quality. The results of the numerical simulations have demonstrated the 
feasibility and the effectiveness of the proposed encryption system. When compared with the 
double color images encryption algorithm in the fractional Fourier domain, the proposed 
encryption algorithm has shown a better robustness to occlusions and additive Gaussian noise. 
It must be also emphasized that, when both color images need to be encrypted for the 
FrFT-based encryption algorithm, our encryption approach only requires to encrypt one 
image, and thus provides savings in data storage while improving the transmission efficiency. 
To further reinforce the encryption system, other techniques such as sparse representation 
will be taken into consideration in the near future. In addition, the proposed encryption 
algorithm can also be extended to encrypt multiple gray or colored images. 
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