H. Klump, B. Schiedlmeier, and C. Baum, Control of Self-Renewal and Differentiation of Hematopoietic Stem Cells: HOXB4 on the Threshold, Annals of the New York Academy of Sciences, vol.18, issue.1, 2005.
DOI : 10.1196/annals.1349.002

S. Gomez-lopez, O. Wiskow, R. Favaro, S. K. Nicolis, D. J. Price et al., Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells In vitro, Sox2 and Pax6 maintain the proliferative and developmental potential of gliogenic neural stem cells In vitro, p.1588, 2011.
DOI : 10.1002/glia.21201

D. Montarras, J. Morgan, C. Collins, F. Relaix, S. Zaffran et al., Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration, Science, vol.309, issue.5743, 2005.
DOI : 10.1126/science.1114758

URL : https://hal.archives-ouvertes.fr/pasteur-00181349

F. M. Watt and B. L. Hogan, Out of Eden: Stem Cells and Their Niches, Science, vol.287, issue.5457, p.1427, 2000.
DOI : 10.1126/science.287.5457.1427

A. Spradling, D. Drummond-barbosa, K. , and T. , Stem cells find their niche, Nature, vol.414, issue.6859, p.98, 2001.
DOI : 10.1038/35102160

D. Howard, L. D. Buttery, K. M. Shakesheff, and S. J. Roberts, Tissue engineering: strategies, stem cells and scaffolds, Journal of Anatomy, vol.29, issue.1, 2008.
DOI : 10.1111/j.1469-7580.2008.00878.x

J. A. Burdick and G. Vunjak-novakovic, Engineered Microenvironments for Controlled Stem Cell Differentiation, Tissue Engineering Part A, vol.15, issue.2, 2009.
DOI : 10.1089/ten.tea.2008.0131

M. Votteler, P. J. Kluger, H. Walles, and K. Schenke-layland, Stem Cell Microenvironments - Unveiling the Secret of How Stem Cell Fate is Defined, Macromolecular Bioscience, vol.213, issue.Suppl 3, p.1302, 2010.
DOI : 10.1002/mabi.201000102

A. J. Engler, S. Sen, H. L. Sweeney, and D. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, 2006.
DOI : 10.1016/j.cell.2006.06.044

M. Krieg, Y. Arboleda-estudillo, P. H. Puech, J. Kafer, F. Graner et al., Tensile forces govern germ-layer organization in zebrafish, Nature Cell Biology, vol.82, issue.4, p.429, 2008.
DOI : 10.1007/s10237-006-0046-x

D. E. Discher, D. J. Mooney, and P. W. Zandstra, Growth Factors, Matrices, and Forces Combine and Control Stem Cells, Science, vol.324, issue.5935, p.1673, 2009.
DOI : 10.1126/science.1171643

H. Liu, J. Lin, R. , and K. , Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells, Biomaterials, vol.27, issue.36, 2006.
DOI : 10.1016/j.biomaterials.2006.05.053

G. Blin, N. Lablack, M. Louis-tisserand, C. Nicolas, C. Picart et al., Nano-scale control of cellular environment to drive embryonic stem cells selfrenewal and fate, Biomaterials, vol.31, issue.7, p.1742, 2010.
DOI : 10.1016/j.biomaterials.2009.11.055

URL : https://hal.archives-ouvertes.fr/hal-00670219

S. C. Li, L. Wang, H. Jiang, J. Acevedo, A. C. Chang et al., Stem cell engineering for treatment of heart diseases: Potentials and challenges, Cell Biology International, vol.33, issue.3, 2009.
DOI : 10.1016/j.cellbi.2008.11.009

G. J. Delcroix, P. C. Schiller, J. P. Benoit, and C. N. Montero-menei, Adult cell therapy for brain neuronal damages and the role of tissue engineering, Biomaterials, vol.31, issue.8, p.2105, 2010.
DOI : 10.1016/j.biomaterials.2009.11.084

L. Visage, C. Gournay, O. Benguirat, N. Hamidi, S. Chaussumier et al., Mesenchymal Stem Cell Delivery into Rat Infarcted Myocardium Using a Porous Polysaccharide-Based Scaffold: A Quantitative Comparison With Endocardial Injection, Tissue Engineering Part A, vol.18, issue.1-2, 2012.
DOI : 10.1089/ten.tea.2011.0053

URL : https://hal.archives-ouvertes.fr/inserm-00613948

K. Nogami, H. Suzuki, H. Habuchi, N. Ishiguro, H. Iwata et al., Distinctive Expression Patterns of Heparan Sulfate O-Sulfotransferases and Regional Differences in Heparan Sulfate Structure in Chick Limb Buds, Journal of Biological Chemistry, vol.279, issue.9, 2004.
DOI : 10.1074/jbc.M307304200

A. K. Powell, E. A. Yates, D. G. Fernig, and J. Turnbull, Interactions of heparin/heparan sulfate with proteins: Appraisal of structural factors and experimental approaches, Glycobiology, vol.14, issue.4, p.17, 2004.
DOI : 10.1093/glycob/cwh051

A. Klaus and W. Birchmeier, Developmental Signaling in Myocardial Progenitor Cells: A Comprehensive View of Bmp- and Wnt/??-Catenin Signaling, Pediatric Cardiology, vol.39, issue.5, 2009.
DOI : 10.1007/s00246-008-9352-7

A. Behfar, C. Perez-terzic, R. S. Faustino, D. K. Arrell, D. M. Hodgson et al., Cardiopoietic programming of embryonic stem cells for tumor-free heart repair, The Journal of Experimental Medicine, vol.288, issue.2, 2007.
DOI : 10.1113/jphysiol.2006.119511

A. Autissier, D. Letourneur, L. Visage, and C. , Pullulan-based hydrogel for smooth muscle cell culture, Journal of Biomedical Materials Research Part A, vol.27, issue.2, 2007.
DOI : 10.1002/jbm.a.30998

M. Lavergne, M. Derkaoui, C. Delmau, D. Letourneur, G. Uzan et al., Porous Polysaccharide-Based Scaffolds for Human Endothelial Progenitor Cells, Macromolecular Bioscience, vol.9, issue.7, 2012.
DOI : 10.1002/mabi.201100431

I. Kehat, D. Kenyagin-karsenti, M. Snir, H. Segev, M. Amit et al., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes, Journal of Clinical Investigation, vol.108, issue.3, 2001.
DOI : 10.1172/JCI200112131

D. Srivastava, Making or Breaking the Heart: From Lineage Determination to Morphogenesis, Cell, vol.126, issue.6, 1037.
DOI : 10.1016/j.cell.2006.09.003

A. Boni, R. Bolli, J. Kajstura, P. Anversa, and A. Leri, Stem cell niches in the adult mouse heart

W. P. Daley, S. B. Peters, and M. Larsen, Extracellular matrix dynamics in development and regenerative medicine, Journal of Cell Science, vol.121, issue.3, 2008.
DOI : 10.1242/jcs.006064

J. I. Goldhaber, H. K. Mikkola, M. Kahn, and W. Maclellan, Recapitulation of the embryonic cardiovascular progenitor cell niche, Biomaterials, vol.32, p.2748, 2011.

A. C. Lake, R. Vassy, D. Benedetto, M. Lavigne, D. et al., Low Molecular Weight Fucoidan Increases VEGF165-induced Endothelial Cell Migration by Enhancing VEGF165 Binding to VEGFR-2 and NRP1, Journal of Biological Chemistry, vol.281, issue.49, 2006.
DOI : 10.1074/jbc.M600686200

S. Ashikari-hada, H. Habuchi, Y. Kariya, N. Itoh, A. H. Reddi et al., Characterization of Growth Factor-binding Structures in Heparin/Heparan Sulfate Using an Octasaccharide Library, Journal of Biological Chemistry, vol.279, issue.13, p.12346, 2004.
DOI : 10.1074/jbc.M313523200

T. A. Mccaffrey, D. J. Falcone, D. Vicente, B. Du, S. Consigli et al., Protection of transforming growth factor-beta 1 activity by heparin and Fucoidan, J Cell Physiol, vol.159, issue.51, 1994.

P. Durand, J. Guezennec, G. Godeau, and D. Letourneur, Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis, Arch Biochem Biophys, vol.445, issue.56, 2006.

J. F. Deux, A. Meddahi-pelle, L. Blanche, A. F. Feldman, L. J. Colliec-jouault et al., Low Molecular Weight Fucoidan Prevents Neointimal Hyperplasia in Rabbit Iliac Artery In-Stent Restenosis Model, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.10, p.1604, 2002.
DOI : 10.1161/01.ATV.0000032034.91020.0A

P. Religa, M. Kazi, J. Thyberg, Z. Gaciong, J. Swedenborg et al., Fucoidan Inhibits Smooth Muscle Cell Proliferation and Reduces Mitogen-activated Protein Kinase Activity, European Journal of Vascular and Endovascular Surgery, vol.20, issue.5, 2000.
DOI : 10.1053/ejvs.2000.1220

URL : http://doi.org/10.1053/ejvs.2000.1220

C. Freguin-bouilland, B. Alkhatib, N. David, F. Lallemand, J. P. Henry et al., Low Molecular Weight Fucoidan Prevents Neointimal Hyperplasia After Aortic Allografting, Transplantation, vol.83, issue.9, p.1234, 2007.
DOI : 10.1097/01.tp.0000261109.97928.9c

V. L. Bautch, Stem cells and the vasculature, Nature Medicine, vol.118, issue.11, 1437.
DOI : 10.1161/ATVBAHA.110.209460

F. Zemani, D. Benisvy, I. Galy-fauroux, A. Lokajczyk, S. Colliec-jouault et al., Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells, Biochemical Pharmacology, vol.70, issue.8, p.1167, 2005.
DOI : 10.1016/j.bcp.2005.07.014

Y. Amano, H. Aoki, T. Kiyosawa, M. Ishihara, and T. Maehara, Effect of controlled release of fibroblast growth factor-2 from chitosan/Fucoidan micro complex-hydrogel on in vitro and in vivo vascularization, J Biomed Mater Res A, vol.85, p.619, 2008.

J. G. Jacot, J. C. Martin, and D. L. Hunt, Mechanobiology of cardiomyocyte development, Journal of Biomechanics, vol.43, issue.1, p.93, 2010.
DOI : 10.1016/j.jbiomech.2009.09.014

B. Russell, M. W. Curtis, Y. E. Koshman, and A. M. Samarel, Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width, Journal of Molecular and Cellular Cardiology, vol.48, issue.5, 2010.
DOI : 10.1016/j.yjmcc.2010.02.016

E. White, Mechanical modulation of cardiac microtubules, Pfl??gers Archiv - European Journal of Physiology, vol.98, issue.1, 2011.
DOI : 10.1007/s00424-011-0963-0

K. C. Clause, J. P. Tinney, L. J. Liu, B. B. Keller, and K. Tobita, Engineered Early Embryonic Cardiac Tissue Increases Cardiomyocyte Proliferation by Cyclic Mechanical Stretch via p38-MAP Kinase Phosphorylation, Tissue Engineering Part A, vol.15, issue.6, p.1373, 2009.
DOI : 10.1089/ten.tea.2008.0169

E. M. Small and P. A. Krieg, Transgenic analysis of the atrialnatriuretic factor (ANF) promoter

W. Bian, B. Liau, N. Badie, and N. Bursac, Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues, Nature Protocols, vol.277, issue.10, 1522.
DOI : 10.1002/(SICI)1097-0185(199812)252:4<612::AID-AR12>3.0.CO;2-1

M. Flaibani, L. Boldrin, E. Cimetta, M. Piccoli, P. De-coppi et al., Muscle Differentiation and Myotubes Alignment Is Influenced by Micropatterned Surfaces and Exogenous Electrical Stimulation, Tissue Engineering Part A, vol.15, issue.9, p.2447, 2009.
DOI : 10.1089/ten.tea.2008.0301