J. Engel, Mesial Temporal Lobe Epilepsy: What Have We Learned?, The Neuroscientist, vol.15, issue.4, pp.340-352, 2001.
DOI : 10.1111/j.1528-1157.1989.tb05316.x

C. Jouny, B. Adamolekun, P. Franaszczuk, and G. Bergey, Intrinsic Ictal Dynamics at the Seizure Focus: Effects of Secondary Generalization Revealed by Complexity Measures, Epilepsia, vol.43, issue.2, pp.297-304, 2007.
DOI : 10.1016/j.yebeh.2003.10.020

I. Ali, M. Salzberg, C. French, and N. Jones, Electrophysiological insights into the enduring effects of early life stress on the brain, Psychopharmacology, vol.130, issue.Suppl 1, pp.155-173, 2011.
DOI : 10.1007/s00213-010-2125-z

A. Koe, N. Jones, and M. Salzberg, Early life stress as an influence on limbic epilepsy: a hypothesis whose time has come?, Frontiers in Behavioral Neuroscience, vol.3, p.24, 2009.
DOI : 10.3389/neuro.08.024.2009

H. Scharfman and T. Pedley, Temporal Lobe Epilepsy, pp.349-369, 2007.
DOI : 10.1016/B978-012088592-3/50035-9

T. Taher, M. Salzberg, M. Morris, S. Rees, O. Brien et al., Chronic Low-Dose Corticosterone Supplementation Enhances Acquired Epileptogenesis in the Rat Amygdala Kindling Model of TLE, Neuropsychopharmacology, vol.231, issue.9, pp.1610-1616, 2005.
DOI : 10.1038/sj.npp.1300709

G. Kumar, A. Couper, O. Brien, T. Salzberg, M. Jones et al., The acceleration of amygdala kindling epileptogenesis by chronic low-dose corticosterone involves both mineralocorticoid and glucocorticoid receptors, Psychoneuroendocrinology, vol.32, issue.7, pp.834-842, 2007.
DOI : 10.1016/j.psyneuen.2007.05.011

H. Karst, E. De-kloet, and M. Joels, Episodic corticosterone treatment accelerates kindling epileptogenesis and triggers long-term changes in hippocampal CA1 cells, in the fully kindled state, European Journal of Neuroscience, vol.564, issue.3, pp.889-898, 1999.
DOI : 10.1046/j.1460-9568.1999.00495.x

M. Sanchez, C. Ladd, and P. Plotsky, Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models, Development and Psychopathology, vol.13, issue.3, pp.419-449, 2001.
DOI : 10.1017/S0954579401003029

G. Kumar, N. Jones, M. Morris, S. Rees, O. Brien et al., Early Life Stress Enhancement of Limbic Epileptogenesis in Adult Rats: Mechanistic Insights, PLoS ONE, vol.9, issue.9, p.24033, 2011.
DOI : 10.1371/journal.pone.0024033.g007

M. Salzberg, G. Kumar, L. Supit, N. Jones, and M. Morris, Early Postnatal Stress Confers Enduring Vulnerability to Limbic Epileptogenesis, Epilepsia, vol.22, issue.11, pp.2079-2085, 2007.
DOI : 10.1016/S0736-5748(98)00024-0

N. Jones, G. Kumar, O. Brien, T. Morris, M. Rees et al., Anxiolytic effects of rapid amygdala kindling, and the influence of early life experience in rats, Behavioural Brain Research, vol.203, issue.1, pp.81-87, 2009.
DOI : 10.1016/j.bbr.2009.04.023

T. Sutula, Kindling, Epilepsy, and the Plasticity of Network Synchronization, Kindling, vol.6, pp.55-147, 2005.
DOI : 10.1007/0-387-26144-3_15

K. Morimoto, M. Fahnestock, and R. Racine, Kindling and status epilepticus models of epilepsy: rewiring the brain, Progress in Neurobiology, vol.73, issue.1, pp.1-60, 2004.
DOI : 10.1016/j.pneurobio.2004.03.009

M. Lai, S. Yang, and L. Huang, Neonatal Isolation Enhances Anxiety-like Behavior Following Early-life Seizure in Rats, Pediatrics & Neonatology, vol.49, issue.2, pp.19-25, 2008.
DOI : 10.1016/S1875-9572(08)60006-6

M. Lai, C. Lui, S. Yang, J. Wang, and L. Huang, Epileptogenesis Is Increased in Rats With Neonatal Isolation and Early-Life Seizure and Ameliorated by MK-801: A Long-Term MRI and Histological Study, Pediatric Research, vol.1, issue.4, pp.441-447, 2009.
DOI : 10.1203/PDR.0b013e3181b337d2

E. Bertram, D. Zhang, and J. Williamson, Multiple roles of midline dorsal thalamic nuclei in induction and spread of limbic seizures, Epilepsia, vol.21, issue.2, pp.256-268, 2008.
DOI : 10.1002/cne.903020308

Z. Nanobashvili, T. Chachua, A. Nanobashvili, I. Bilanishvili, and O. Lindvall, Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus, Experimental Neurology, vol.181, issue.2, pp.224-230, 2003.
DOI : 10.1016/S0014-4886(03)00045-1

S. Mraovitch and Y. Calando, Limbic and/or generalized convulsive seizures elicited by specific sites in the thalamus, NeuroReport, vol.6, issue.3, pp.519-523, 1995.
DOI : 10.1097/00001756-199502000-00028

S. Mraovitch and Y. Calando, Interactions between limbic, thalamo-striatal-cortical, and central autonomic pathways during epileptic seizure progression, The Journal of Comparative Neurology, vol.378, issue.1, pp.145-161, 1999.
DOI : 10.1002/(SICI)1096-9861(19990816)411:1<145::AID-CNE11>3.0.CO;2-1

N. Jones, M. Salzberg, G. Kumar, A. Couper, and M. Morris, Elevated anxiety and depressive-like behavior in a rat model of genetic generalized epilepsy suggesting common causation, Experimental Neurology, vol.209, issue.1, pp.254-260, 2008.
DOI : 10.1016/j.expneurol.2007.09.026

R. Racine, Modification of seizure activity by electrical stimulation: II. Motor seizure, Electroencephalography and Clinical Neurophysiology, vol.32, issue.3, pp.281-294, 1972.
DOI : 10.1016/0013-4694(72)90177-0

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 1998.

D. Pinault, A new stabilizing craniotomy???duratomy technique for single-cell anatomo-electrophysiological exploration of living intact brain networks, Journal of Neuroscience Methods, vol.141, issue.2, pp.231-242, 2005.
DOI : 10.1016/j.jneumeth.2004.06.015

URL : https://hal.archives-ouvertes.fr/inserm-00560828

D. Pinault, A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin, Journal of Neuroscience Methods, vol.65, issue.2, pp.113-136, 1996.
DOI : 10.1016/0165-0270(95)00144-1

D. Pinault, M. Vergnes, and C. Marescaux, Medium-voltage 5???9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons, Neuroscience, vol.105, issue.1, pp.181-201, 2001.
DOI : 10.1016/S0306-4522(01)00182-8

URL : https://hal.archives-ouvertes.fr/inserm-00560830

J. Csicsvari, H. Hirase, A. Czurko, A. Mamiya, and G. Buzsaki, Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat, Journal of Neuroscience, vol.19, pp.274-287, 1999.

P. Bartho, H. Hirase, L. Monconduit, M. Zugaro, and K. Harris, Characterization of Neocortical Principal Cells and Interneurons by Network Interactions and Extracellular Features, Journal of Neurophysiology, vol.92, issue.1, pp.600-608, 2004.
DOI : 10.1152/jn.01170.2003

Y. Kaneoke and J. Vitek, Burst and oscillation as disparate neuronal properties, Journal of Neuroscience Methods, vol.68, issue.2, pp.211-223, 1996.
DOI : 10.1016/0165-0270(96)00081-7

C. Mirescu, J. Peters, and E. Gould, Early life experience alters response of adult neurogenesis to stress, Nature Neuroscience, vol.10, issue.8, pp.841-846, 2004.
DOI : 10.1016/0306-4522(90)90407-U

M. Thomas, A. Watabe, T. Moody, M. Makhinson, O. Dell et al., Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation, Journal of Neuroscience, vol.18, pp.7118-7126, 1998.

F. Pike, R. Meredith, A. Olding, and O. Paulsen, Postsynaptic bursting is essential for ???Hebbian??? induction of associative long-term potentiation at excitatory synapses in rat hippocampus, The Journal of Physiology, vol.126, issue.2, pp.571-576, 1999.
DOI : 10.1111/j.1469-7793.1999.0571p.x

J. Lisman, Bursts as a unit of neural information: making unreliable synapses reliable, Trends in Neurosciences, vol.20, issue.1, pp.38-43, 1997.
DOI : 10.1016/S0166-2236(96)10070-9

C. Stevens and Y. Wang, Facilitation and depression at single central synapses, Neuron, vol.14, issue.4, pp.795-802, 1995.
DOI : 10.1016/0896-6273(95)90223-6

A. Becker, J. Pitsch, D. Sochivko, T. Opitz, and M. Staniek, Transcriptional Upregulation of Cav3.2 Mediates Epileptogenesis in the Pilocarpine Model of Epilepsy, Journal of Neuroscience, vol.28, issue.49, pp.13341-13353, 2008.
DOI : 10.1523/JNEUROSCI.1421-08.2008

J. Graef, B. Nordskog, W. Wiggins, and D. Godwin, An Acquired Channelopathy Involving Thalamic T-Type Ca2+ Channels after Status Epilepticus, Journal of Neuroscience, vol.29, issue.14, pp.4430-4441, 2009.
DOI : 10.1523/JNEUROSCI.0198-09.2009

E. Sanabria, A. Da-silva, R. Spreafico, and E. Cavalheiro, Damage, Reorganization, and Abnormal Neocortical Hyperexcitability in the Pilocarpine Model of Temporal Lobe Epilepsy, Epilepsia, vol.41, pp.96-106, 2002.
DOI : 10.1046/j.1528-1157.43.s.5.31.x

L. Heisler, H. Chu, T. Brennan, J. Danao, and P. Bajwa, Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice, Proceedings of the National Academy of Sciences, vol.95, issue.25, pp.15049-15054, 1998.
DOI : 10.1073/pnas.95.25.15049

E. Freeman-daniels, S. Beck, and L. Kirby, Cellular correlates of anxiety in CA1 hippocampal pyramidal cells of 5-HT1A receptor knockout mice, Psychopharmacology, vol.29, issue.Suppl, pp.453-463, 2011.
DOI : 10.1007/s00213-010-2030-5

L. Xu, R. Anwyl, J. Devry, and M. Rowan, Effect of repeated ipsapirone treatment on hippocampal excitatory synaptic transmission in the freely behaving rat: role of 5-HT1A receptors and relationship to anxiolytic effect, European Journal of Pharmacology, vol.323, issue.1, pp.59-68, 1997.
DOI : 10.1016/S0014-2999(97)00022-8

G. Kapus, I. Gacsalyi, M. Vegh, H. Kompagne, and E. Hegedus, Antagonism of AMPA receptors produces anxiolytic-like behavior in rodents: Effects of GYKI 52466 and its novel analogues, Psychopharmacology, vol.14, issue.2, pp.231-241, 2008.
DOI : 10.1007/s00213-008-1121-z

E. Bertram, P. Mangan, D. Zhang, C. Scott, and J. Williamson, The Midline Thalamus: Alterations and a Potential Role in Limbic Epilepsy, Epilepsia, vol.74, issue.8, pp.967-978, 2001.
DOI : 10.1046/j.1528-1157.2001.042008967.x

T. Hiyoshi and J. Wada, Midline thalamic lesion and feline amygdaloid kindling. II. Effect of lesion placement upon completion of primary site kindling, Electroencephalography and Clinical Neurophysiology, vol.70, issue.4, pp.339-349, 1988.
DOI : 10.1016/0013-4694(88)90052-1

S. Patel, M. Millan, and B. Meldrum, Decrease in excitatory transmission within the lateral habenula and the mediodorsal thalamus protects against limbic seizures in rats, Experimental Neurology, vol.101, issue.1, pp.63-74, 1988.
DOI : 10.1016/0014-4886(88)90065-9

S. Chen, H. Su, C. Yue, R. S. Royeck, and M. , An Increase in Persistent Sodium Current Contributes to Intrinsic Neuronal Bursting After Status Epilepticus, Journal of Neurophysiology, vol.105, issue.1, pp.117-129, 2011.
DOI : 10.1152/jn.00184.2010

G. Faas, M. Vreugdenhil, and W. Wadman, Calcium currents in pyramidal CA1 neurons in vitro after kindling epileptogenesis in the hippocampus of the rat, Neuroscience, vol.75, issue.1, pp.57-67, 1996.
DOI : 10.1016/0306-4522(96)00254-0

E. Tringham, K. Powell, S. Cain, K. Kuplast, and J. Mezeyova, T-Type Calcium Channel Blockers That Attenuate Thalamic Burst Firing and Suppress Absence Seizures, Science Translational Medicine, vol.4, issue.121, 2012.
DOI : 10.1126/scitranslmed.3003120

R. Wimmer, S. Astori, C. Bond, Z. Rovo, and J. Chatton, Sustaining Sleep Spindles through Enhanced SK2-Channel Activity Consolidates Sleep and Elevates Arousal Threshold, Journal of Neuroscience, vol.32, issue.40, pp.13917-13928, 2012.
DOI : 10.1523/JNEUROSCI.2313-12.2012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658620

J. Aldenhoff, D. Gruol, J. Rivier, W. Vale, and G. Siggins, Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons, Science, vol.221, issue.4613, pp.875-877, 1983.
DOI : 10.1126/science.6603658

S. Cain and T. Snutch, Contributions of T-type calcium channel isoforms to neuronal firing, Channels, vol.414, issue.6, pp.475-482, 2010.
DOI : 10.1073/pnas.1009500107

S. Cavdar, F. Onat, Y. Cakmak, H. Yananli, and M. Gulcebi, The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat, Journal of Anatomy, vol.5, issue.3, pp.249-256, 2008.
DOI : 10.1002/cne.902660110

F. Wouterlood, E. Saldana, and M. Witter, Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracerPhaseolus vulgaris-leucoagglutinin, The Journal of Comparative Neurology, vol.266, issue.2, pp.179-203, 1990.
DOI : 10.1002/cne.902960202

M. Suarez, M. Maglianesi, and N. Perassi, Involvement of the Anterodorsal Thalami Nuclei on the Hypophysoadrenal Response to Chronic Stress in Rats, Physiology & Behavior, vol.64, issue.1, pp.111-116, 1998.
DOI : 10.1016/S0031-9384(98)00028-6

Y. Ulrich-lai and J. Herman, Neural regulation of endocrine and autonomic stress responses, Nature Reviews Neuroscience, vol.164, issue.6, pp.397-409, 2009.
DOI : 10.1038/nrn2647

S. Bhatnagar, R. Huber, N. Nowak, and P. Trotter, Lesions of the Posterior Paraventricular Thalamus Block Habituation of Hypothalamic-Pituitary-Adrenal Responses to Repeated Restraint, Journal of Neuroendocrinology, vol.917, issue.5, pp.403-410, 2002.
DOI : 10.1046/j.0007-1331.2002.00792.x

G. Siggins, D. Gruol, J. Aldenhoff, and Q. Pittman, Electrophysiological Actions of Corticotropin-Releasing Factor in the Central Nervous-System, Federation Proceedings, vol.44, pp.237-242, 1985.

Y. Tjong, S. Ip, L. Lao, J. Wu, and H. Fong, Neonatal maternal, separation elevates thalamic corticotrophin releasing factor type 1 receptor expression response to colonic distension in rat, Neuroendocrinology Letters, vol.31, pp.215-220, 2010.

L. Parr, M. Boudreau, E. Hecht, J. Winslow, and C. Nemeroff, Early life stress affects cerebral glucose metabolism in adult rhesus monkeys (Macaca mulatta), Developmental Cognitive Neuroscience, vol.2, issue.1, pp.181-193, 2012.
DOI : 10.1016/j.dcn.2011.09.003

S. Ons, O. Marti, and A. Armario, Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA, Journal of Neurochemistry, vol.89, issue.5, pp.1111-1118, 2004.
DOI : 10.1111/j.1471-4159.2004.02396.x

K. Skilbeck, G. Johnston, and T. Hinton, receptors, Journal of Neurochemistry, vol.1181, issue.5, pp.1115-1130, 2010.
DOI : 10.1111/j.1471-4159.2009.06539.x

A. Brooks-kayal, J. H. Price, M. Dichter, and M. , Developmental Expression of GABAA Receptor Subunit mRNAs in Individual Hippocampal Neurons In Vitro and In Vivo, Journal of Neurochemistry, vol.70, issue.3, pp.1017-1028, 1998.
DOI : 10.1046/j.1471-4159.1998.70031017.x

A. Brooks-kayal, M. Shumate, H. Jin, T. Rikhter, and D. Coulter, Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy, Nature Medicine, vol.70, issue.10, pp.1166-1172, 1998.
DOI : 10.1016/0306-4522(95)00348-M

Z. Xu, Y. Wang, J. M. Yue, J. Xu, and C. , Polarity-dependent effect of low-frequency stimulation on amygdaloid kindling in rats, Brain Stimulation, vol.6, issue.2, 2012.
DOI : 10.1016/j.brs.2012.04.010

R. Adamec, C. Stark-adamec, W. Burnham, S. Bruun-meyer, and R. Perrin, Power spectral analysis of EEG drug response in the kindled rat brain, Electroencephalography and Clinical Neurophysiology, vol.52, issue.5, pp.451-460, 1981.
DOI : 10.1016/0013-4694(81)90029-8

F. Nazer and C. Dickson, Slow Oscillation State Facilitates Epileptiform Events in the Hippocampus, Journal of Neurophysiology, vol.102, issue.3, pp.1880-1889, 2009.
DOI : 10.1152/jn.90795.2008

V. Crunelli, A. Errington, S. Hughes, and T. Toth, The thalamic low-threshold Ca2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.10, issue.3, pp.3820-3839, 2011.
DOI : 10.1016/S0306-4522(00)00280-3

A. Mcfarlane, C. Clark, R. Bryant, L. Williams, and R. Niaura, THE IMPACT OF EARLY LIFE STRESS ON PSYCHOPHYSIOLOGICAL, PERSONALITY AND BEHAVIORAL MEASURES IN 740 NON-CLINICAL SUBJECTS, Journal of Integrative Neuroscience, vol.04, issue.01, pp.27-40, 2005.
DOI : 10.1142/S0219635205000689

N. Tsuru, Neuronal Firing Pattern Following Amygdaloid Kindling in Unrestrained Rats, Epilepsia, vol.106, issue.5, pp.488-492, 1985.
DOI : 10.1016/0013-4694(63)90115-9

G. Teskey and R. Racine, Increased spontaneous unit discharge rates following electrical kindling in the rat, Brain Research, vol.624, issue.1-2, pp.11-18, 1993.
DOI : 10.1016/0006-8993(93)90054-Q

D. Bonhaus, J. Walters, and J. Mcnamara, Activation of Substantia-Nigra Neurons ? Role in the Propagation of Seizures in Kindled Rats, Journal of Neuroscience, vol.6, pp.3024-3030, 1986.

A. Cymerblit-sabba and Y. Schiller, Network Dynamics during Development of Pharmacologically Induced Epileptic Seizures in Rats In Vivo, Journal of Neuroscience, vol.30, issue.5, pp.1619-1630, 2010.
DOI : 10.1523/JNEUROSCI.5078-09.2010

A. Cymerblit-sabba and Y. Schiller, Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo, Journal of Neurophysiology, vol.107, issue.6, pp.1718-1730, 2012.
DOI : 10.1152/jn.00327.2011