A. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch et al., Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature, vol.415, issue.6868, pp.415141-147, 2002.
DOI : 10.1038/415141a

D. Wilson, On the specificity of antibiotics targeting the large ribosomal subunit, Annals of the New York Academy of Sciences, vol.30, issue.1, pp.1-16, 2011.
DOI : 10.1111/j.1749-6632.2011.06192.x

S. Brenner and R. Horne, A negative staining method for high resolution electron microscopy of viruses, Biochimica et Biophysica Acta, vol.34, pp.103-110, 1959.
DOI : 10.1016/0006-3002(59)90237-9

J. Lepault, F. Booy, and J. Dubochet, Electron microscopy of frozen biological suspensions, Journal of Microscopy, vol.94, issue.1, pp.89-102, 1983.
DOI : 10.1111/j.1365-2818.1983.tb04163.x

J. Dubochet, A. M. Chang, J. Homo, J. Lepault, J. Mcdowall et al., Cryo-electron microscopy of vitrified specimens, Quarterly Reviews of Biophysics, vol.1, issue.3, pp.129-228, 1988.
DOI : 10.1038/164666a0

K. Taylor and R. Glaeser, Electron Diffraction of Frozen, Hydrated Protein Crystals, Science, vol.186, issue.4168, pp.1036-1037, 1974.
DOI : 10.1126/science.186.4168.1036

R. Glaeser, Retrospective: Radiation damage and its associated ???Information Limitations???, Journal of Structural Biology, vol.163, issue.3, pp.271-276, 2008.
DOI : 10.1016/j.jsb.2008.06.001

R. Henderson and G. Mcmullan, Problems in obtaining perfect images by single-particle electron cryomicroscopy of biological structures in amorphous ice, Microscopy, vol.62, issue.1, pp.43-50
DOI : 10.1093/jmicro/dfs094

B. Carragher, N. Kisseberth, D. Kriegman, R. Milligan, C. Potter et al., Leginon: An Automated System for Acquisition of Images from Vitreous Ice Specimens, Journal of Structural Biology, vol.132, issue.1, pp.33-45, 2000.
DOI : 10.1006/jsbi.2000.4314

E. Orlova and H. Saibil, Structure determination of macromolecular assemblies by single-particle analysis of cryo-electron micrographs, Current Opinion in Structural Biology, vol.14, issue.5
DOI : 10.1016/j.sbi.2004.08.004

M. Van-heel, Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction, Ultramicroscopy, vol.21, issue.2, pp.111-123, 1987.
DOI : 10.1016/0304-3991(87)90078-7

J. Walz, D. Typke, M. Nitsch, A. Koster, R. Hegerl et al., Electron Tomography of Single Ice-Embedded Macromolecules: Three-Dimensional Alignment and Classification, Journal of Structural Biology, vol.120, issue.3, pp.387-395, 1997.
DOI : 10.1006/jsbi.1997.3934

M. Radermacher, Three-Dimensional reconstruction of single particles from random and nonrandom tilt series, Journal of Electron Microscopy Technique, vol.52, issue.4, pp.359-394, 1988.
DOI : 10.1002/jemt.1060090405

A. Leschziner and E. Nogales, Visualizing Flexibility at Molecular Resolution: Analysis of Heterogeneity in Single-Particle Electron Microscopy Reconstructions, Annual Review of Biophysics and Biomolecular Structure, vol.36, issue.1, pp.43-62, 2007.
DOI : 10.1146/annurev.biophys.36.040306.132742

A. Simonetti, S. Marzi, A. Myasnikov, A. Fabbretti, M. Yusupov et al., Structure of the 30S translation initiation complex, Nature, vol.154, issue.7211, pp.455416-420, 2008.
DOI : 10.1038/nature07192

URL : https://hal.archives-ouvertes.fr/hal-00342095

P. Penczek, M. Kimmel, and C. Spahn, Identifying Conformational States of Macromolecules by Eigen-Analysis of Resampled Cryo-EM Images, Structure, vol.19, issue.11, pp.1582-1590, 2011.
DOI : 10.1016/j.str.2011.10.003

E. Compe and J. Egly, TFIIH: when transcription met DNA repair, Nat Rev Mol Cell Biol, vol.2012, issue.136, pp.343-354
DOI : 10.1038/nrm3350

J. Fuss and J. Tainer, XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase, DNA Repair, vol.10, issue.7, pp.697-713
DOI : 10.1016/j.dnarep.2011.04.028

D. Helmlinger, L. Tora, and D. Devys, Transcriptional alterations and chromatin remodeling in polyglutamine diseases, Trends in Genetics, vol.22, issue.10, pp.562-570, 2006.
DOI : 10.1016/j.tig.2006.07.010

URL : https://hal.archives-ouvertes.fr/hal-00187954

T. Matsumoto, M. Sakari, M. Okada, A. Yokoyama, S. Takahashi et al., The Androgen Receptor in Health and Disease, Annual Review of Physiology, vol.75, issue.1, pp.201-224, 2013.
DOI : 10.1146/annurev-physiol-030212-183656

A. Fadloun, D. Kobi, J. Pointud, A. Indra, M. Teletin et al., The TFIID subunit TAF4 regulates keratinocyte proliferation and has cell-autonomous and noncell-autonomous tumour suppressor activity in mouse epidermis, pp.1342947-2958, 2007.

S. Hashimoto, S. Boissel, M. Zarhrate, M. Rio, A. Munnich et al., MED23 Mutation Links Intellectual Disability to Dysregulation of Immediate Early Gene Expression, Science, vol.333, issue.6046, pp.1161-1163, 2011.
DOI : 10.1126/science.1206638

E. Duncan and C. Allis, Errors in Erasure: Links Between Histone Lysine Methylation Removal and Disease, Prog Drug Res, vol.67, pp.69-90, 2011.
DOI : 10.1007/978-3-7643-8989-5_4

M. Kalogeropoulou, A. Voulgari, V. Kostourou, R. Sandaltzopoulos, R. Dikstein et al., TAF4b and Jun/Activating Protein-1 Collaborate to Regulate the Expression of Integrin ??6 and Cancer Cell Migration Properties, Molecular Cancer Research, vol.8, issue.4, pp.554-568, 2010.
DOI : 10.1158/1541-7786.MCR-09-0159

G. Orphanides, T. Lagrange, and D. Reinberg, The general transcription factors of RNA polymerase II., Genes & Development, vol.10, issue.21, pp.2657-2683, 1996.
DOI : 10.1101/gad.10.21.2657

R. Roeder, The role of general initiation factors in transcription by RNA polymerase II, Trends in Biochemical Sciences, vol.21, issue.9, pp.327-335, 1996.
DOI : 10.1016/S0968-0004(96)10050-5

G. Papai, P. Weil, and P. Schultz, New insights into the function of transcription factor TFIID from recent structural studies, Current Opinion in Genetics & Development, vol.21, issue.2, pp.219-224, 2011.
DOI : 10.1016/j.gde.2011.01.009

W. Liu, R. Coleman, E. Ma, P. Grob, J. Yang et al., Structures of three distinct activator-TFIID complexes, Genes & Development, vol.23, issue.13, pp.1510-1521, 2009.
DOI : 10.1101/gad.1790709

D. Nikolov, S. Hu, J. Lin, A. Gasch, A. Hoffmann et al., Crystal structure of TFIID TATA-box binding protein, Nature, vol.360, issue.6399, pp.36040-36086, 1992.
DOI : 10.1038/360040a0

C. Birck, O. Poch, C. Romier, M. Ruff, G. Mengus et al., Human TAFII28 and TAFII18 Interact through a Histone Fold Encoded by Atypical Evolutionary Conserved Motifs Also Found in the SPT3 Family, Cell, vol.94, issue.2, pp.239-249, 1998.
DOI : 10.1016/S0092-8674(00)81423-3

S. Werten, A. Mitschler, C. Romier, Y. Gangloff, S. Thuault et al., Crystal structure of a subcomplex of human transcription factor TFIID formed by TATA binding protein-associated factors hTAF4 (hTAF(II) 135) and hTAF12 (hTAF(II)20), J Biol Chem, issue.47, pp.27745502-45509, 2002.

Y. Gangloff, J. Pointud, S. Thuault, L. Carre, C. Romier et al., The TFIID Components Human TAFII140 and Drosophila BIP2 (TAFII155) Are Novel Metazoan Homologues of Yeast TAFII47 Containing a Histone Fold and a PHD Finger, Molecular and Cellular Biology, vol.21, issue.15, pp.5109-5121, 2001.
DOI : 10.1128/MCB.21.15.5109-5121.2001

C. Romier, N. James, C. Birck, J. Cavarelli, C. Vivares et al., Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly
URL : https://hal.archives-ouvertes.fr/hal-00166258

E. Scheer, F. Delbac, L. Tora, D. Moras, and C. Romier, TFIID TAF6-TAF9 Complex Formation Involves the HEAT Repeat-containing C-terminal Domain of TAF6 and Is Modulated by TAF5 Protein, Journal of Biological Chemistry, vol.287, issue.33, pp.28727580-27592
DOI : 10.1074/jbc.M112.379206

URL : https://hal.archives-ouvertes.fr/hal-00821880

R. Jacobson, A. Ladurner, D. King, and R. Tjian, Structure and Function of a Human TAFII250 Double Bromodomain Module, Science, vol.288, issue.5470, pp.1422-1425, 2000.
DOI : 10.1126/science.288.5470.1422

M. Brand, C. Leurent, V. Mallouh, L. Tora, and P. Schultz, Three-Dimensional Structures of the TAFII-Containing Complexes TFIID and TFTC, Science, vol.286, issue.5447, pp.2151-2153, 1999.
DOI : 10.1126/science.286.5447.2151

F. Andel, A. Ladurner, C. Inouye, R. Tjian, and E. Nogales, Three-Dimensional Structure of the Human TFIID-IIA-IIB Complex, Science, vol.286, issue.5447, pp.2153-2156, 1999.
DOI : 10.1126/science.286.5447.2153

G. Papai, M. Tripathi, C. Ruhlmann, S. Werten, C. Crucifix et al., Mapping the Initiator Binding Taf2 Subunit in the Structure of Hydrated Yeast TFIID, Structure, vol.17, issue.3, pp.363-373, 2009.
DOI : 10.1016/j.str.2009.01.006

URL : https://hal.archives-ouvertes.fr/inserm-00384525

C. Leurent, S. Sanders, M. Demeny, K. Garbett, C. Ruhlmann et al., Mapping key functional sites within yeast TFIID, The EMBO Journal, vol.23, issue.4, pp.719-727, 2004.
DOI : 10.1038/sj.emboj.7600111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC381015

C. Leurent, S. Sanders, C. Ruhlmann, V. Mallouh, P. Weil et al., Mapping histone fold TAFs within yeast TFIID, The EMBO Journal, vol.21, issue.13, pp.3424-3433, 2002.
DOI : 10.1093/emboj/cdf342

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC126091

C. Bieniossek, G. Papai, C. Schaffitzel, F. Garzoni, M. Chaillet et al., The architecture of human general transcription factor TFIID core complex, Nature, vol.278, issue.7434, pp.493699-702
DOI : 10.1038/nature11791

G. Papai, M. Tripathi, C. Ruhlmann, J. Layer, P. Weil et al., TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation, Nature, vol.25, issue.7300, pp.465956-960, 2010.
DOI : 10.1038/nature09080