G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, R. D. Schreiber et al., Cancer immunoediting: from immunosurveillance to tumor escape Interferons, immunity and cancer immunoediting Therapeutic targets in cancer cell metabolism and autophagy, Nat Immunol Nat Rev Immunol Nat Biotechnol, issue.311 6117, pp.991-998, 2002.

Z. Kartasis, T. Economopoulos, M. A. Dimopoulos, N. W. Van-de-donk, S. Kamps et al., ISS): an analysis of the Greek Myeloma Study Group (GMSG) Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma Vaccines as consolidation therapy for myeloid leukemia NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia From tumor cell metabolism to tumor immune escape On respiratory impairment in cancer cells, International Staging System Leukemia Expert review of hematology J Clin Oncol Int J Biochem Cell Biol Science, vol.1919, issue.6263215, pp.1152-1157, 1956.

T. Li, N. Kon, L. Jiang, M. Tan, T. Ludwig et al., Tumor Suppression in the Absence of p53-Mediated Cell-Cycle Arrest, Apoptosis, and Senescence. Cell, issue.6, pp.149-1269, 2012.

R. Bhatia, Altered hematopoietic cell gene expression precedes development of therapy-related myelodysplasia/acute myeloid leukemia and identifies patients at risk, Cancer Cell, issue.5, pp.20-591, 2011.

R. Z. Yusuf, Y. H. Wang, and D. T. Scadden, The secrets of the bone marrow niche: Metabolic priming for AML, Nature Medicine, vol.4, issue.6, pp.18-865, 2012.
DOI : 10.1038/ncb2432

G. Elliott, R. E. Ries, J. E. Payton, P. Westervelt, M. H. Tomasson et al., Recurring mutations found by sequencing an acute myeloid leukemia genome, N Engl J Med, issue.11, pp.361-1058, 2009.

I. Samudio, M. Fiegl, and M. Andreeff, Mitochondrial Uncoupling and the Warburg Effect: Molecular Basis for the Reprogramming of Cancer Cell Metabolism, Cancer Research, vol.69, issue.6, pp.69-2163, 2009.
DOI : 10.1158/0008-5472.CAN-08-3722

T. Hitosugi, S. Kang, M. G. Vander-heiden, T. W. Chung, S. Elf et al., Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth, Science Signaling, vol.2, issue.97, p.73, 2009.
DOI : 10.1126/scisignal.2000431

Y. Wang, Y. Liu, S. N. Malek, and P. Zheng, Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies, Cell Stem Cell, issue.84, pp.399-411, 2011.

M. Villalba, M. G. Rathore, N. Lopez-royuela, E. Krzywinska, and J. Garaude, Allende- Vega, N., From tumor cell metabolism to tumor immune escape, Int J Biochem Cell Biol, 2012.

K. Kaluarachchi, W. Bornmann, S. Duvvuri, H. Taegtmeyer, and M. Andreeff, Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction, J Clin Invest, issue.1, pp.120-142, 2010.

J. M. Tirado-velez, I. Joumady, A. Saez-benito, I. Cozar-castellano, and G. Perdomo, Inhibition of Fatty Acid Metabolism Reduces Human Myeloma Cells Proliferation, PLoS ONE, vol.7, issue.9, pp.46484-46504, 2012.
DOI : 10.1371/journal.pone.0046484.g006

E. L. Carr, A. Kelman, G. S. Wu, R. Gopaul, E. Senkevitch et al., Glutamine Uptake and Metabolism Are Coordinately Regulated by ERK/MAPK during T Lymphocyte Activation, The Journal of Immunology, vol.185, issue.2, pp.185-1037, 2010.
DOI : 10.4049/jimmunol.0903586

M. Villalba, The NF-kappaB member p65 controls glutamine metabolism through miR-23a, Int J Biochem Cell Biol, issue.9, pp.44-1448, 2012.

M. Karin and F. R. Greten, NF-kappaB: linking inflammation and immunity to cancer development and progression, Nat Rev Immunol, issue.510, pp.749-759, 2005.

J. Ingles-esteve, J. Nomdedeu, B. Bellosillo, C. Besses, O. Abdel-wahab et al., The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia, Aifantis, I Cancer Cell, issue.3, pp.18-268, 2010.

W. L. Zhao, Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways, Leukemia, vol.32, issue.1, pp.24-37, 2010.
DOI : 10.1016/j.cellsig.2009.03.009

C. V. Dang, MYC, microRNAs and glutamine addiction in cancers, Cell Cycle, vol.8, issue.20, pp.3243-3245, 2009.
DOI : 10.4161/cc.8.20.9522

N. P. Shanware, A. R. Mullen, R. J. Deberardinis, and R. T. Abraham, Glutamine: pleiotropic roles in tumor growth and stress resistance, Journal of Molecular Medicine, vol.390, issue.Suppl 1, pp.89-229, 2011.
DOI : 10.1007/s00109-011-0731-9

D. Gaglio, C. Soldati, M. Vanoni, L. Alberghina, and F. Chiaradonna, Glutamine Deprivation Induces Abortive S-Phase Rescued by Deoxyribonucleotides in K-Ras Transformed Fibroblasts, PLoS ONE, vol.5, issue.7, p.4715, 2009.
DOI : 10.1371/journal.pone.0004715.s007

M. N. Hall, Glutaminolysis activates Rag-mTORC1 signaling, Mol Cell, issue.3, pp.47-349, 2012.

R. Rossignol, R. Gilkerson, R. Aggeler, K. Yamagata, S. J. Remington et al., Energy Substrate Modulates Mitochondrial Structure and Oxidative Capacity in Cancer Cells, Cancer Research, vol.64, issue.3, pp.64-985, 2004.
DOI : 10.1158/0008-5472.CAN-03-1101

I. Nissim, E. Daikhin, M. Yudkoff, S. B. Mcmahon, and C. B. Thompson, Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction, Proc Natl Acad Sci U S A, issue.48, pp.105-18782, 2008.

R. A. Hipskind, J. A. Enriquez, M. Sanchez-beato, J. Pardo, A. Anel et al., Oxidative phosphorylation induces de novo expression of the MHC class I in tumor cells through the ERK5 pathway, J Immunol, issue.6, pp.185-3498, 2010.

J. B. Wang, J. W. Erickson, R. Fuji, S. Ramachandran, P. Gao et al., Targeting mitochondrial glutaminase activity inhibits oncogenic transformation, Cancer Cell, issue.3, pp.18-207, 2010.
DOI : 10.1016/j.ccr.2010.10.011

URL : http://doi.org/10.1016/j.ccr.2010.10.011

W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine et al., Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function, Proceedings of the National Academy of Sciences, vol.107, issue.16, pp.107-7455, 2010.
DOI : 10.1073/pnas.1001006107

M. Lokshin, H. Hosokawa, T. Nakayama, Y. Suzuki, S. Sugano et al., Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species, Proc Natl Acad Sci U S A, issue.16, pp.107-7461, 2010.

D. R. Wise and C. B. Thompson, Glutamine addiction: a new therapeutic target in cancer, Trends in Biochemical Sciences, vol.35, issue.8, pp.35-427, 2010.
DOI : 10.1016/j.tibs.2010.05.003

U. K. Narta, S. S. Kanwar, and W. Azmi, Pharmacological and clinical evaluation of Lasparaginase in the treatment of leukemia. Critical reviews in oncology/hematology, pp.61-208, 2007.

V. I. Avramis and E. H. Panosyan, Pharmacokinetic/Pharmacodynamic Relationships of Asparaginase Formulations, Clinical Pharmacokinetics, vol.17, issue.8, pp.44-367, 2005.
DOI : 10.2165/00003088-200544040-00003

M. C. Wu, G. K. Arimura, and A. A. Yunis, Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase, International Journal of Cancer, vol.19, issue.6, pp.22-728, 1978.
DOI : 10.1002/ijc.2910220615

M. M. Robinson, S. J. Mcbryant, T. Tsukamoto, C. Rojas, D. V. Ferraris et al., Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), Biochemical Journal, vol.406, issue.3, pp.406-407, 2007.
DOI : 10.1042/BJ20070039

R. M. Higashi, T. W. Fan, and C. V. Dang, Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells, Cell Metab, issue.1, pp.15-110, 2012.

C. Yang, J. Sudderth, T. Dang, R. M. Bachoo, J. G. Mcdonald et al., Glioblastoma Cells Require Glutamate Dehydrogenase to Survive Impairments of Glucose Metabolism or Akt Signaling, Cancer Research, vol.69, issue.20, pp.69-7986, 2009.
DOI : 10.1158/0008-5472.CAN-09-2266

D. Mereles and W. Hunstein, Epigallocatechin-3-gallate (EGCG) for Clinical Trials:??More Pitfalls than Promises?, International Journal of Molecular Sciences, vol.12, issue.12, pp.12-5592, 2011.
DOI : 10.3390/ijms12095592

P. W. Stacpoole, L. R. Gilbert, R. E. Neiberger, P. R. Carney, E. Valenstein et al., Evaluation of Long-term Treatment of Children With Congenital Lactic Acidosis With Dichloroacetate, PEDIATRICS, vol.121, issue.5, pp.121-1223, 2008.
DOI : 10.1542/peds.2007-2062

C. Maguire, T. L. Gammer, J. R. Mackey, D. Fulton, B. Abdulkarim et al., Metabolic modulation of glioblastoma with dichloroacetate, Sci Transl Med, issue.2, pp.31-31, 2010.

D. F. Flavin, Non-Hodgkin's Lymphoma Reversal with Dichloroacetate, Journal of Oncology, vol.33, issue.3, 2010.
DOI : 10.1126/stke.3812007pe14

N. Zhang and A. F. Palmer, Development of a dichloroacetic acid-hemoglobin conjugate as a potential targeted anti-cancer therapeutic, Biotechnology and Bioengineering, vol.109, issue.3, pp.1413-1420, 2011.
DOI : 10.1002/bit.23071

Z. Luo, M. Zang, and W. Guo, AMPK as a metabolic tumor suppressor: control of metabolism and cell growth, Future Oncology, vol.6, issue.3, pp.457-470, 2010.
DOI : 10.2217/fon.09.174

S. M. Jeon, N. S. Chandel, and N. Hay, AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress, Nature, vol.281, issue.7400, pp.485-661, 2012.
DOI : 10.1038/nature11066

L. Rycak, R. Rudalska, R. Moll, S. Kempa, L. Zender et al., Deregulated MYC expression induces dependence upon AMPK-related kinase 5, Nature, issue.7391, pp.483-608, 2012.

D. R. Alessi, K. Sakamoto, and J. R. Bayascas, LKB1-Dependent Signaling Pathways, Annual Review of Biochemistry, vol.75, issue.1, pp.137-163, 2006.
DOI : 10.1146/annurev.biochem.75.103004.142702

J. Blagih, C. M. Krawczyk, and R. G. Jones, LKB1 and AMPK: central regulators of lymphocyte metabolism and function, Immunological Reviews, vol.182, issue.1, pp.249-59, 2012.
DOI : 10.1111/j.1600-065X.2012.01157.x

C. Chambers, B. J. Fuerth, B. Viollet, O. A. Mamer, D. Avizonis et al., AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo, Cell Metab, issue.1, pp.17-113, 2013.

L. Manzoli, A. Cappellini, and J. A. Mccubrey, Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies, Expert opinion on therapeutic targets, issue.7, pp.16-729, 2012.

B. Viollet and C. B. Thompson, Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth, Cancer Res, issue.14, pp.67-6745, 2007.

W. Mcburnie, S. Fleming, and D. R. Alessi, Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice, Biochem J, issue.2, pp.412-211, 2008.

M. A. Weiser, M. E. Cabanillas, M. Konopleva, D. A. Thomas, S. A. Pierce et al., Relation between the duration of remission and hyperglycemia during induction chemotherapy for acute lymphocytic leukemia with a hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone/methotrexatecytarabine regimen, Cancer, issue.6, pp.100-1179, 2004.

J. A. Mccubrey and A. M. Martelli, AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications, Leukemia, issue.1, pp.26-91, 2012.

M. Konopleva, M. Andreeff, M. H. Lee, and S. C. Yeung, Differential impact of structurally different anti-diabetic drugs on proliferation and chemosensitivity of acute lymphoblastic leukemia cells, Cell Cycle, issue.1112, pp.2314-2326, 2012.

E. Vakana, J. K. Altman, H. Glaser, N. J. Donato, and L. C. Platanias, Antileukemic effects of AMPK activators on BCR-ABL-expressing cells, Blood, vol.118, issue.24, pp.118-6399, 2011.
DOI : 10.1182/blood-2011-01-332783

C. Lacombe, P. Mayeux, D. Bouscary, and J. Tamburini, The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation, Blood, issue.20, pp.116-4262, 2010.

B. Viollet, B. Guigas, N. Garcia, J. Leclerc, M. Foretz et al., Cellular and molecular mechanisms of metformin: an overview, Clinical Science, vol.30, issue.6, pp.122-253, 2012.
DOI : 10.1002/mc.20637

URL : https://hal.archives-ouvertes.fr/inserm-00658070

Z. Feng, W. Hu, E. De-stanchina, A. K. Teresky, S. Jin et al., The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways, Cancer Res, issue.7, pp.67-3043, 2007.

E. Gottlieb and K. H. Vousden, p53 regulation of metabolic pathways. Cold Spring Harbor perspectives in biology, p.1040, 2010.

A. M. Puzio-kuter, The Role of p53 in Metabolic Regulation, Genes & Cancer, vol.2, issue.4, pp.385-391, 2011.
DOI : 10.1177/1947601911409738

J. M. Nigro, S. J. Baker, A. C. Preisinger, J. M. Jessup, R. Hostetter et al., Mutations in the p53 gene occur in diverse human tumour types, Nature, vol.342, issue.6250, pp.342-705, 1989.
DOI : 10.1038/342705a0

C. J. Brown, C. F. Cheok, C. S. Verma, and D. P. Lane, Reactivation of p53: from peptides to small molecules, Trends in Pharmacological Sciences, vol.32, issue.1, pp.32-53, 2011.
DOI : 10.1016/j.tips.2010.11.004

Y. Peng, C. Li, L. Chen, S. Sebti, and J. Chen, Rescue of mutant p53 transcription function by ellipticine, Oncogene, vol.22, issue.29, pp.22-4478, 2003.
DOI : 10.1038/sj.onc.1206777

H. Nahi, M. Merup, S. Lehmann, S. Bengtzen, L. Mollgard et al., PRIMA-1 induces apoptosis in acute myeloid leukaemia cells with p53 gene deletion, British Journal of Haematology, vol.8, issue.2, pp.132-230, 2006.
DOI : 10.1007/s002800050514

F. Wang, J. Liu, D. Robbins, K. Morris, A. Sit et al., Mutant p53 exhibits trivial effects on mitochondrial functions which can be reactivated by ellipticine in lymphoma cells, Apoptosis, vol.119, issue.3, pp.16-301, 2011.
DOI : 10.1007/s10495-010-0559-8

D. Li, N. D. Marchenko, R. Schulz, V. Fischer, T. Velasco-hernandez et al., Functional Inactivation of Endogenous MDM2 and CHIP by HSP90 Causes Aberrant Stabilization of Mutant p53 in Human Cancer Cells, Molecular Cancer Research, vol.9, issue.5, pp.577-588, 2011.
DOI : 10.1158/1541-7786.MCR-10-0534

A. A. Lane and B. A. Chabner, Histone Deacetylase Inhibitors in Cancer Therapy, Journal of Clinical Oncology, vol.27, issue.32, pp.27-5459, 2009.
DOI : 10.1200/JCO.2009.22.1291

S. Minucci and P. G. Pelicci, Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer, Nature Reviews Cancer, vol.105, issue.1, pp.38-51, 2006.
DOI : 10.1038/nrc1779

T. A. Libermann, V. M. Richon, P. A. Marks, and K. C. Anderson, Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications, Proc Natl Acad Sci U S A, issue.2, pp.101-540, 2004.

S. Balasubramanian, J. Ramos, W. Luo, M. Sirisawad, E. Verner et al., A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas, Leukemia, vol.282, issue.5, pp.22-1026, 2008.
DOI : 10.1038/leu.2008.9

M. Mrksich and A. K. Oyelere, Non-peptide macrocyclic histone deacetylase inhibitors derived from tricyclic ketolide skeleton, Journal of medicinal chemistry, issue.16, pp.53-6100, 2010.

T. Mizukami, H. Nakagawa, S. Iida, R. Ueda, K. Shirahige et al., Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries, Journal of medicinal chemistry, issue.22, pp.55-9562, 2012.

T. Liu, P. Y. Liu, and G. M. Marshall, The Critical Role of the Class III Histone Deacetylase SIRT1 in Cancer, Cancer Research, vol.69, issue.5, pp.69-1702, 2009.
DOI : 10.1158/0008-5472.CAN-08-3365

M. C. Sugden, P. W. Caton, and M. J. Holness, PPAR control: it's SIRTainly as easy as PGC, Journal of Endocrinology, vol.204, issue.2
DOI : 10.1677/JOE-09-0359

R. Venugopal and A. K. Jaiswal, Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes, Oncogene, vol.17, issue.24, pp.17-3145, 1998.
DOI : 10.1038/sj.onc.1202237

X. Li and N. Kazgan, Mammalian Sirtuins and Energy Metabolism, International Journal of Biological Sciences, vol.7, issue.5, pp.575-587, 2011.
DOI : 10.7150/ijbs.7.575

URL : http://doi.org/10.7150/ijbs.7.575

F. Malavasi and S. Deaglio, Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network, Cancer Res, issue.13, pp.71-4473, 2011.

C. Craddock and B. M. Turner, Histone deacetylases in acute myeloid leukaemia show a distinctive 24

L. Li, L. Wang, Z. Wang, Y. Ho, T. Mcdonald et al., Activation of p53 by SIRT1 Inhibition Enhances Elimination of CML Leukemia Stem Cells in Combination with Imatinib, Cancer Cell, vol.21, issue.2, pp.21-266, 2012.
DOI : 10.1016/j.ccr.2011.12.020

S. Chung, H. Yao, S. Caito, J. W. Hwang, G. Arunachalam et al., Regulation of SIRT1 in cellular functions: Role of polyphenols, Archives of Biochemistry and Biophysics, vol.501, issue.1, pp.501-79, 2010.
DOI : 10.1016/j.abb.2010.05.003

K. Li and J. Luo, The Role of SIRT1 in Tumorigenesis, American Chinese Journal of Medicine and Science, vol.4, issue.2, pp.104-106, 2011.
DOI : 10.7156/v4i2p104

S. Lain, J. J. Hollick, J. Campbell, O. D. Staples, M. Higgins et al., Discovery, In Vivo Activity, and Mechanism of Action of a Small-Molecule p53 Activator, Cancer Cell, vol.13, issue.5, pp.13-454, 2008.
DOI : 10.1016/j.ccr.2008.03.004

M. Serrano, M. Witt, A. Villar-garea, A. Imhof, J. M. Mato et al., Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect, Oncogene, issue.6, pp.28-781, 2009.

D. Maria, R. Fraga, M. Esteller, M. Altucci, L. Mai et al., Discovery of salermide-related sirtuin inhibitors: binding mode studies and antiproliferative effects in cancer cells including cancer stem cells, Journal of medicinal chemistry, issue.24, pp.55-10937, 2012.

J. A. Baur and D. A. Sinclair, SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function, Cell Metab, issue.5, pp.15-675, 2012.

D. M. Mossalayi and J. P. Kolb, Analysis of resveratrol-induced apoptosis in human B-cell chronic leukaemia, Br J Haematol, issue.4, pp.117-842, 2002.

P. Comi, Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT- 4 cells, Biochemical pharmacology, issue.11, pp.74-1568, 2007.

P. Jezek, L. Plecita-hlavata, K. Smolkova, and R. Rossignol, Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development, Int J Biochem Cell Biol, issue.5, pp.42-604, 2010.

N. Bellance, P. Lestienne, and R. Rossignol, Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis, Front Biosci, vol.14, pp.4015-4034, 2009.

K. Smolkova, L. Plecita-hlavata, N. Bellance, G. Benard, R. Rossignol et al., Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells, The International Journal of Biochemistry & Cell Biology, vol.43, issue.7, pp.43-950, 2011.
DOI : 10.1016/j.biocel.2010.05.003

F. M. Burnet, The Concept of Immunological Surveillance, Prog Exp Tumor Res, vol.13, pp.1-27, 1970.
DOI : 10.1159/000386035

F. Rodriguez, R. A. Hipskind, A. Anel, and M. Villalba, Impaired anti-leukemic immune response in PKCtheta-deficient mice, Mol Immunol, issue.12, pp.45-3463, 2008.

M. Sitbon, N. Taylor, and M. Villalba, The protooncogene Vav1 regulates murine leukemia virusinduced T-cell leukemogenesis. Oncoimmunology, pp.600-608, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726759

A. Anel, J. I. Aguilo, E. Catalan, J. Garaude, M. G. Rathore et al., Protein Kinase C-theta (PKC-theta) in Natural Killer Cell Function and Anti-Tumor Immunity, Frontiers in immunology, issue.3, p.187, 2012.

J. I. Aguilo, J. Garaude, J. Pardo, M. Villalba, and A. Anel, Protein kinase C-theta is required for NK cell activation and in vivo control of tumor progression, J Immunol, issue.4, pp.182-1972, 2009.

A. Alcami and U. H. Koszinowski, Viral mechanisms of immune evasion, Trends Microbiol, issue.89, pp.410-418, 2000.

F. Garrido, MHC class I antigens and immune surveillance in transformed cells, Int Rev Cytol, vol.256, pp.139-189, 2007.

M. Campoli and S. Ferrone, HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance, Oncogene, vol.14, issue.45, pp.27-5869, 2008.
DOI : 10.1128/MCB.20.7.2592-2603.2000

E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, Functions of natural killer cells, Nature Immunology, vol.178, issue.5, pp.503-510, 2008.
DOI : 10.1073/pnas.050588297

URL : https://hal.archives-ouvertes.fr/hal-00294184

B. Pan and S. Lentzsch, The application and biology of immunomodulatory drugs (IMiDs) in cancer, Pharmacology & Therapeutics, vol.136, issue.1, pp.56-68, 2012.
DOI : 10.1016/j.pharmthera.2012.07.004

T. Latif, N. Chauhan, R. Khan, A. Moran, and S. Z. Usmani, Thalidomide and its analogues in the treatment of Multiple Myeloma, Experimental Hematology & Oncology, vol.1, issue.1, p.27, 2012.
DOI : 10.1182/blood-2011-01-331454

T. Ito, H. Ando, T. Suzuki, T. Ogura, K. Hotta et al., Identification of a Primary Target of Thalidomide Teratogenicity, Science, vol.327, issue.5971, pp.327-1345, 2010.
DOI : 10.1126/science.1177319

Y. X. Zhu, K. M. Kortuem, and A. K. Stewart, Molecular mechanism of action of immunemodulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma, Leuk Lymphoma, 2012.

D. Chauhan, S. P. Treon, P. Richardson, and K. C. Anderson, Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application, Br J Haematol, issue.2, pp.128-192, 2005.

L. J. Reitzer, B. M. Wice, and D. Kennell, Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells, J Biol Chem, issue.8, pp.254-2669, 1979.

B. Martin-castillo, J. Joven, and J. A. Menendez, Metformin rescues cell surface major histocompatibility complex class I (MHC-I) deficiency caused by oncogenic transformation, Cell Cycle, issue.115, 2012.

D. Singer, A. Anel, and M. Villalba, ERK5 Knockdown generates mouse leukemia cells with low MHC class i levels that activate NK cells and block tumorigenesis, J Immunol, issue.6, pp.182-3398, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00368654

J. Borges, A. Pandiella, M. A. Iniguez, M. Fresno, R. A. Hipskind et al., ERK5 activates NF-kappaB in leukemic T cells and is essential for their growth in vivo, J Immunol, issue.11, pp.177-7607, 2006.

J. Garaude, S. Kaminski, S. Cherni, R. A. Hipskind, and M. Villalba, The Role of ERK5 in T-Cell Signalling, Scandinavian Journal of Immunology, vol.163, issue.6, pp.62-515, 2005.
DOI : 10.1128/MCB.20.22.8382-8389.2000

E. Tartour, L. Zitvogel, and G. Kroemer, Adoptive cell transfer immunotherapy, Oncoimmunology, issue.13, pp.306-315, 2012.

M. Ardolino, A. Zingoni, C. Cerboni, F. Cecere, A. Soriani et al., DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK-T cell interaction, Blood, vol.117, issue.18, pp.117-4778, 2011.
DOI : 10.1182/blood-2010-08-300954

R. Wang and D. R. Green, Metabolic checkpoints in activated T cells, Nature Immunology, vol.4, issue.10, pp.907-915, 2012.
DOI : 10.1016/j.cmet.2011.06.017