J. Ambati, A. Anand, S. Fernandez, E. Sakurai, B. Lynn et al., An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice, Nature Medicine, vol.9, issue.11, pp.1390-1397, 2003.
DOI : 10.1038/nm950

E. Anastasopoulos, A. Kakoulidou, A. Coleman, J. Sinsheimer, M. Wilson et al., Association of Sequence Variation in the CX3CR1 Gene with Geographic Atrophy Age-related Macular Degeneration in a Greek Population, Current Eye Research, vol.93, issue.2, pp.1148-1155, 2012.
DOI : 10.3109/02713683.2012.705413

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, The Journal of Experimental Medicine, vol.148, issue.5, pp.1057-1069, 2007.
DOI : 10.1016/0022-1759(94)90012-4

URL : https://hal.archives-ouvertes.fr/inserm-00136917

J. Bazan, K. Bacon, G. Hardiman, W. Wang, K. Soo et al., A new class of membrane-bound chemokine with a CX3C motif, Nature, vol.385, issue.6617, pp.640-644, 1997.
DOI : 10.1038/385640a0

A. Cardona, E. Pioro, M. Sasse, V. Kostenko, S. Cardona et al., Control of microglial neurotoxicity by the fractalkine receptor, Nature Neuroscience, vol.24, issue.7, pp.917-924, 2006.
DOI : 10.1038/nn1715

M. Chen, J. Forrester, and H. Xu, Dysregulation in Retinal Para-Inflammation and Age-Related Retinal Degeneration in CCL2 or CCR2 Deficient Mice, PLoS ONE, vol.49, issue.1, p.22818, 2011.
DOI : 10.1371/journal.pone.0022818.t001

M. Chen, C. Luo, R. Penalva, and H. Xu, Paraquat-Induced Retinal Degeneration Is Exaggerated in CX3CR1-Deficient Mice and Is Associated with Increased Retinal Inflammation, Investigative Opthalmology & Visual Science, vol.54, issue.1, pp.682-690, 2013.
DOI : 10.1167/iovs.12-10888

M. Chen, J. Zhao, C. Luo, S. Pandi, R. Penalva et al., Para-inflammation-mediated retinal recruitment of bone marrow-derived myeloid cells following whole-body irradiation is CCL2 dependent, Glia, vol.27, issue.5, pp.833-842, 2012.
DOI : 10.1002/glia.22315

H. Chinnery, S. Mclenachan, T. Humphries, J. Kezic, X. Chen et al., Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1, Neurobiology of Aging, vol.33, issue.8, pp.1769-1776, 2011.
DOI : 10.1016/j.neurobiolaging.2011.03.010

A. Chow, B. Brown, and M. Merad, Studying the mononuclear phagocyte system in the molecular age, Nature Reviews Immunology, vol.83, issue.11, pp.788-798, 2011.
DOI : 10.1038/nri3087

C. Combadiere, C. Feumi, R. W. Keller, N. Rodero, M. Pezard et al., CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration, Journal of Clinical Investigation, vol.117, issue.10, pp.2920-2928, 2007.
DOI : 10.1172/JCI31692DS1

URL : https://hal.archives-ouvertes.fr/inserm-00176389

C. Combadiere, S. Potteaux, J. Gao, B. Esposito, S. Casanova et al., Decreased Atherosclerotic Lesion Formation in CX3CR1/Apolipoprotein E Double Knockout Mice, Circulation, vol.107, issue.7, pp.1009-1016, 2003.
DOI : 10.1161/01.CIR.0000057548.68243.42

C. Combadiere, S. Potteaux, M. Rodero, T. Simon, A. Pezard et al., Combined Inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6Chi and Ly6Clo Monocytosis and Almost Abolishes Atherosclerosis in Hypercholesterolemic Mice, Circulation, vol.117, issue.13, pp.1649-1657, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.745091

G. Conductier, N. Blondeau, A. Guyon, J. Nahon, and C. Rovere, The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases, Journal of Neuroimmunology, vol.224, issue.1-2, pp.93-100, 2010.
DOI : 10.1016/j.jneuroim.2010.05.010

URL : https://hal.archives-ouvertes.fr/hal-00858500

F. Cruz-guilloty, A. Saeed, J. Echegaray, S. Duffort, A. Ballmick et al., Infiltration of Proinflammatory M1 Macrophages into the Outer Retina Precedes Damage in a Mouse Model of Age-Related Macular Degeneration, International Journal of Inflammation, vol.53, issue.6, p.503725, 2013.
DOI : 10.1016/j.bmc.2009.09.009

A. Edwards, R. Ritter, I. Abel, K. Manning, A. Panhuysen et al., Complement Factor H Polymorphism and Age-Related Macular Degeneration, Science, vol.308, issue.5720, pp.421-424, 2005.
DOI : 10.1126/science.1110189

B. Fife, G. Huffnagle, W. Kuziel, and W. Karpus, Cc Chemokine Receptor 2 Is Critical for Induction of Experimental Autoimmune Encephalomyelitis, The Journal of Experimental Medicine, vol.7, issue.6, pp.899-905, 2000.
DOI : 10.1038/385640a0

E. Gautier, T. Shay, J. Miller, M. Greter, C. Jakubzick et al., Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages, Nature Immunology, vol.18, issue.11, pp.1118-1128, 2012.
DOI : 10.1103/PhysRevLett.76.3251

F. Geissmann, S. Jung, and D. Littman, Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties, Immunity, vol.19, issue.1, pp.71-82, 2003.
DOI : 10.1016/S1074-7613(03)00174-2

F. Geissmann, M. Manz, S. Jung, M. Sieweke, M. Merad et al., Development of Monocytes, Macrophages, and Dendritic Cells, Science, vol.327, issue.5966, pp.656-661, 2010.
DOI : 10.1126/science.1178331

URL : https://hal.archives-ouvertes.fr/hal-00502972

C. Guo, A. Otani, A. Oishi, H. Kojima, Y. Makiyama et al., Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa, Experimental Eye Research, vol.104, pp.39-47, 2012.
DOI : 10.1016/j.exer.2012.08.013

N. Gupta, K. Brown, and A. Milam, Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration, Experimental Eye Research, vol.76, issue.4, pp.463-471, 2003.
DOI : 10.1016/S0014-4835(02)00332-9

R. Guymer, L. Tao, J. Goh, D. Liew, O. Ischenko et al., Identification of Urinary Biomarkers for Age-Related Macular Degeneration, Investigative Opthalmology & Visual Science, vol.52, issue.7, pp.4639-4644, 2011.
DOI : 10.1167/iovs.10-7120

J. Haines, M. Hauser, S. Schmidt, W. Scott, L. Olson et al., Complement Factor H Variant Increases the Risk of Age-Related Macular Degeneration, Science, vol.308, issue.5720, pp.419-421, 2005.
DOI : 10.1126/science.1110359

T. Hisatomi, T. Sakamoto, K. Sonoda, C. Tsutsumi, H. Qiao et al., Clearance of Apoptotic Photoreceptors, The American Journal of Pathology, vol.162, issue.6, pp.1869-1879, 2003.
DOI : 10.1016/S0002-9440(10)64321-0

T. Hong, A. Tan, P. Mitchell, and J. Wang, A Review and Meta-analysis of the Association Between C-Reactive Protein and Age-related Macular Degeneration, Survey of Ophthalmology, vol.56, issue.3, pp.184-194, 2011.
DOI : 10.1016/j.survophthal.2010.08.007

D. Huang, J. Wang, P. Kivisakk, B. Rollins, and R. Ransohoff, Absence of Monocyte Chemoattractant Protein 1 in Mice Leads to Decreased Local Macrophage Recruitment and Antigen-Specific T Helper Cell Type 1 Immune Response in Experimental Autoimmune Encephalomyelitis, The Journal of Experimental Medicine, vol.161, issue.6, pp.713-726, 2001.
DOI : 10.1084/jem.184.2.771

M. Huynh, V. Fadok, and P. Henson, Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-??1 secretion and the resolution of inflammation, Journal of Clinical Investigation, vol.109, issue.1, pp.41-50, 2002.
DOI : 10.1172/JCI0211638

L. Izikson, R. Klein, I. Charo, H. Weiner, and A. Luster, Resistance to Experimental Autoimmune Encephalomyelitis in Mice Lacking the Cc Chemokine Receptor (Ccr2), The Journal of Experimental Medicine, vol.59, issue.7, pp.1075-1080, 2000.
DOI : 10.1038/29788

J. Jonas, Y. Tao, M. Neumaier, and P. Findeisen, Monocyte Chemoattractant Protein 1, Intercellular Adhesion Molecule 1, and Vascular Cell Adhesion Molecule 1 in Exudative Age-Related Macular Degeneration, Archives of Ophthalmology, vol.128, issue.10, pp.1281-1286, 2010.
DOI : 10.1001/archophthalmol.2010.227

J. Kezic, X. Chen, E. Rakoczy, and P. Mcmenamin, Diabetic Mouse, Investigative Opthalmology & Visual Science, vol.54, issue.1, pp.854-863, 2013.
DOI : 10.1167/iovs.12-10876

R. Klein, B. Klein, M. Knudtson, S. Meuer, M. Swift et al., Fifteen-Year Cumulative Incidence of Age-Related Macular Degeneration, Ophthalmology, vol.114, issue.2, pp.253-262, 2007.
DOI : 10.1016/j.ophtha.2006.10.040

R. Klein, T. Peto, A. Bird, and M. Vannewkirk, The epidemiology of age-related macular degeneration, American Journal of Ophthalmology, vol.137, issue.3, pp.486-495, 2004.
DOI : 10.1016/j.ajo.2003.11.069

R. Klein, C. Zeiss, E. Chew, J. Tsai, R. Sackler et al., Complement Factor H Polymorphism in Age-Related Macular Degeneration, Science, vol.308, issue.5720, pp.385-389, 2005.
DOI : 10.1126/science.1109557

H. Kohno, Y. Chen, B. Kevany, E. Pearlman, M. Miyagi et al., Photoreceptor Proteins Initiate Microglial Activation via Toll-like Receptor 4 in Retinal Degeneration Mediated by All-trans-retinal, Journal of Biological Chemistry, vol.288, issue.21, pp.15326-15341, 2013.
DOI : 10.1074/jbc.M112.448712

O. Levy, B. Calippe, R. W. Camelo, S. Lavalette, S. Guillonneau et al., CX3CR1 deficient macrophages present an impaired clearance from the subretinal space, ARVO Meeting Abstr, vol.52, p.968, 2011.

U. Luhmann, C. Lange, R. S. Munro, P. Cowing, J. Armer et al., Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling, PLoS ONE, vol.152, issue.4, p.35551, 2012.
DOI : 10.1371/journal.pone.0035551.s002

U. Luhmann, R. S. Munro, P. Barker, S. Duran, Y. Luong et al., -Knockout Mice Is Caused by an Accelerated Accumulation of Swollen Autofluorescent Subretinal Macrophages, Investigative Opthalmology & Visual Science, vol.50, issue.12, pp.5934-5943, 2009.
DOI : 10.1167/iovs.09-3462

URL : https://hal.archives-ouvertes.fr/hal-00504927

W. Ma, L. Zhao, A. Fontainhas, R. Fariss, W. Wong et al., Microglia in the Mouse Retina Alter the Structure and Function of Retinal Pigmented Epithelial Cells: A Potential Cellular Interaction Relevant to AMD, PLoS ONE, vol.4, issue.11, pp.7945-54, 2009.
DOI : 10.1371/journal.pone.0007945.t001

J. Maller, S. George, S. Purcell, J. Fagerness, D. Altshuler et al., Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration, American Journal of Ophthalmology, vol.143, issue.1, pp.1055-1059, 2006.
DOI : 10.1016/j.ajo.2006.11.012

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends in Immunology, vol.25, issue.12, pp.677-686, 2004.
DOI : 10.1016/j.it.2004.09.015

M. Mattapallil, E. Wawrousek, C. Chan, H. Zhao, J. Roychoudhury et al., Gene Is Present in Vendor Lines of C57BL/6N Mice and Embryonic Stem Cells, and Confounds Ocular Induced Mutant Phenotypes, Investigative Opthalmology & Visual Science, vol.53, issue.6, pp.2921-2927, 2012.
DOI : 10.1167/iovs.12-9662

G. Miljanich, P. Nemes, D. White, and E. Dratz, The asymmetric transmembrane distribution of phosphatidylethanolamine, phosphatidylserine, and fatty acids of the bovine retinal rod outer segment disk membrane, The Journal of Membrane Biology, vol.87, issue.3, pp.249-255, 1981.
DOI : 10.1007/BF01992562

M. Mizutani, P. Pino, N. Saederup, I. Charo, R. Ransohoff et al., The Fractalkine Receptor but Not CCR2 Is Present on Microglia from Embryonic Development throughout Adulthood, The Journal of Immunology, vol.188, issue.1, pp.29-36, 2011.
DOI : 10.4049/jimmunol.1100421

R. Molday, D. Hicks, and L. Molday, Peripherin. A rim-specific membrane protein of rod outer segment discs, Invest Ophthalmol Vis Sci, vol.28, pp.50-61, 1987.

T. Nakazawa, T. Hisatomi, C. Nakazawa, K. Noda, K. Maruyama et al., Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis, Proceedings of the National Academy of Sciences, vol.104, issue.7, pp.2425-2430, 2007.
DOI : 10.1073/pnas.0608167104

A. Newman, N. Gallo, L. Hancox, N. Miller, C. Radeke et al., Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks, Genome Medicine, vol.4, issue.2, p.16, 2012.
DOI : 10.1016/j.molimm.2008.12.001

M. Paques, M. Simonutti, M. Roux, S. Picaud, E. Levavasseur et al., High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse, Vision Research, vol.46, issue.8-9, pp.1336-1345, 2006.
DOI : 10.1016/j.visres.2005.09.037

P. Penfold, S. Liew, M. Madigan, and J. Provis, Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration, Invest Ophthalmol Vis Sci, vol.38, pp.2125-2133, 1997.

R. Ransohoff, Chemokines and Chemokine Receptors: Standing at the Crossroads of Immunobiology and Neurobiology, Immunity, vol.31, issue.5, pp.711-721, 2009.
DOI : 10.1016/j.immuni.2009.09.010

R. Ransohoff and A. Cardona, The myeloid cells of the central nervous system parenchyma, Nature, vol.57, issue.7321, pp.253-262, 2010.
DOI : 10.1038/nature09615

W. Raoul, C. Feumi, N. Keller, S. Lavalette, M. Houssier et al., Lipid-Bloated Subretinal Microglial Cells Are at the Origin of Drusen Appearance in CX3CR1-Deficient Mice, Ophthalmic Research, vol.40, issue.3-4, pp.115-119, 2008.
DOI : 10.1159/000119860

URL : https://hal.archives-ouvertes.fr/inserm-00315944

W. Raoul, N. Keller, M. Rodero, F. Behar-cohen, F. Sennlaub et al., Role of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells, Journal of Neuroimmunology, vol.198, issue.1-2, pp.56-61, 2008.
DOI : 10.1016/j.jneuroim.2008.04.014

URL : https://hal.archives-ouvertes.fr/inserm-00311574

M. Rutar, R. Natoli, and J. Provis, Small interfering RNA-mediated suppression of Ccl2 in M??ller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration, Journal of Neuroinflammation, vol.452, issue.5, p.221, 2012.
DOI : 10.1186/1742-2094-9-221

N. Saederup, A. Cardona, K. Croft, M. Mizutani, A. Cotleur et al., Selective chemokine receptor usage by central nervous ß 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO, EMBO Mol Med, vol.5, pp.1775-1793, 2010.

J. Sarks, S. Sarks, and M. Killingsworth, system myeloid cells in CCR2-red fluorescent protein knock-in mice Evolution of geographic atrophy of the retinal pigment epithelium, PLoS One Eye (Lond), vol.5, issue.2, pp.552-577, 1988.

S. Sarks, Ageing and degeneration in the macular region: a clinico-pathological study., British Journal of Ophthalmology, vol.60, issue.5, pp.324-341, 1976.
DOI : 10.1136/bjo.60.5.324

M. Sasahara, A. Otani, A. Oishi, H. Kojima, Y. Yodoi et al., Activation of Bone Marrow-Derived Microglia Promotes Photoreceptor Survival in Inherited Retinal Degeneration, The American Journal of Pathology, vol.172, issue.6, pp.1693-1703, 2008.
DOI : 10.2353/ajpath.2008.080024

M. Silverman, D. Zamora, Y. Pan, P. Texeira, S. Baek et al., Constitutive and Inflammatory Mediator-Regulated Fractalkine Expression in Human Ocular Tissues and Cultured Cells, Investigative Opthalmology & Visual Science, vol.44, issue.4, pp.1608-1615, 2003.
DOI : 10.1167/iovs.02-0233

J. Simpson, J. Newcombe, M. Cuzner, and M. Woodroofe, Expression of monocyte chemoattractant protein-1 and other ??-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions, Journal of Neuroimmunology, vol.84, issue.2, pp.238-249, 1998.
DOI : 10.1016/S0165-5728(97)00208-7

C. Sunderkotter, T. Nikolic, M. Dillon, N. Van-rooijen, M. Stehling et al., Subpopulations of Mouse Blood Monocytes Differ in Maturation Stage and Inflammatory Response, The Journal of Immunology, vol.172, issue.7, pp.4410-4417, 2004.
DOI : 10.4049/jimmunol.172.7.4410

M. Suzuki, M. Tsujikawa, H. Itabe, Z. Du, P. Xie et al., Chronic photo-oxidative stress and subsequent MCP-1 activation as causative factors for age-related macular degeneration, Journal of Cell Science, vol.125, issue.10, pp.2407-2415, 2012.
DOI : 10.1242/jcs.097683

F. Swirski, P. Libby, E. Aikawa, P. Alcaide, F. Luscinskas et al., Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata, Journal of Clinical Investigation, vol.117, issue.1, pp.195-205, 2007.
DOI : 10.1172/JCI29950

M. Tremblay, B. Stevens, A. Sierra, H. Wake, A. Bessis et al., The Role of Microglia in the Healthy Brain, Journal of Neuroscience, vol.31, issue.45, pp.16064-16069, 2011.
DOI : 10.1523/JNEUROSCI.4158-11.2011

C. Tsou, W. Peters, Y. Si, S. Slaymaker, A. Aslanian et al., Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites, Journal of Clinical Investigation, vol.117, issue.4, pp.902-909, 2007.
DOI : 10.1172/JCI29919

C. Tsutsumi, K. Sonoda, K. Egashira, H. Qiao, T. Hisatomi et al., The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization, Journal of Leukocyte Biology, vol.74, issue.1, pp.25-32, 2003.
DOI : 10.1189/jlb.0902436

J. Tuo, C. Bojanowski, M. Zhou, D. Shen, R. Ross et al., Deficiency Results in Retinal Lesions Mimicking Human Age-Related Macular Degeneration, Investigative Opthalmology & Visual Science, vol.48, issue.8, pp.3827-3836, 2007.
DOI : 10.1167/iovs.07-0051

J. Tuo, B. Smith, C. Bojanowski, A. Meleth, I. Gery et al., The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration, The FASEB Journal, vol.18, pp.1297-1299, 2004.
DOI : 10.1096/fj.04-1862fje

R. Van-leeuwen, C. Klaver, J. Vingerling, A. Hofman, and P. De-jong, The Risk and Natural Course of Age-Related Maculopathy, Archives of Ophthalmology, vol.121, issue.4, pp.519-526, 2003.
DOI : 10.1001/archopht.121.4.519

K. Vessey, U. Greferath, A. Jobling, J. Phipps, T. Ho et al., Ccl2/Cx3cr1 Knockout Mice Have Inner Retinal Dysfunction but Are Not an Accelerated Model of AMD, Investigative Opthalmology & Visual Science, vol.53, issue.12, pp.7833-7846, 2012.
DOI : 10.1167/iovs.12-10650

L. Wong, S. Myers, C. Tsou, J. Gosling, H. Arai et al., Organization and Differential Expression of the Human Monocyte Chemoattractant Protein 1 Receptor Gene: EVIDENCE FOR THE ROLE OF THE CARBOXYL-TERMINAL TAIL IN RECEPTOR TRAFFICKING, Journal of Biological Chemistry, vol.272, issue.2, pp.1038-1045, 1997.
DOI : 10.1074/jbc.272.2.1038

T. Wynn, A. Chawla, and J. Pollard, Macrophage biology in development, homeostasis and disease, Nature, vol.6, issue.7446, pp.445-455, 2013.
DOI : 10.1038/nature12034

H. Xu, M. Chen, A. Manivannan, N. Lois, and J. Forrester, Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice, Aging Cell, vol.11, issue.1, pp.58-68, 2008.
DOI : 10.1111/j.1474-9726.2007.00351.x

K. Yamada, E. Sakurai, M. Itaya, S. Yamasaki, and Y. Ogura, Inhibition of Laser-Induced Choroidal Neovascularization by Atorvastatin by Downregulation of Monocyte Chemotactic Protein-1 Synthesis in Mice, Investigative Opthalmology & Visual Science, vol.48, issue.4, pp.1839-1843, 2007.
DOI : 10.1167/iovs.06-1085

X. Yang, J. Hu, J. Zhang, and H. Guan, Polymorphisms in CFH, HTRA1 and CX3CR1 confer risk to exudative age-related macular degeneration in Han Chinese, British Journal of Ophthalmology, vol.94, issue.9, 2010.
DOI : 10.1136/bjo.2009.165811