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Abstract

Background: Dihydroartemisinin-piperaquine is a new ACT that is administered as single daily dose for three days

and has been demonstrated to be tolerated and highly effective for the treatment of uncomplicated Plasmodium

falciparum malaria. Piperaquine was used alone to replace chloroquine as the first-line treatment for uncomplicated

malaria in China in response to increasing chloroquine resistance in the 1970s. However, the rapid emergence of

piperaquine-resistant strains that resulted in the cessation of its use in China in the 1980s, suggests that there is

cross-resistance between piperaquine and chloroquine. Very few data are available on cross-resistance between

piperaquine and chloroquine, and the data that do exist are often contradictory.

Methods: In total, 280 P. falciparum isolates, collected between April 2008 and June 2012 from patients

hospitalized in France with imported malaria from a malaria-endemic country, were assessed ex vivo for piperaquine

and chloroquine susceptibilities by using the standard 42-hour 3H-hypoxanthine uptake inhibition method. The

chloroquine resistance-associated mutation K76T in pfcrt was also investigated for the 280 isolates.

Results: The IC50 for piperaquine ranged from 9.8 nM to 217.3 nM (mean = 81.3 nM. The IC50 for chloroquine

ranged from 5.0 nM to 1,918 nM (mean = 83.6 nM. A significant but low correlation was observed between the Log

IC50 values for piperaquine and chloroquine (r = 0.145, p < 0.001). However, the coefficient of determination of 0.021

indicates that only 2.1% of the variation in the response to piperaquine is explained by the variation in the

response to chloroquine. The mean value for piperaquine was 74.0 nM in the Pfcrt K76 wild-type group (no = 125)

and 87.7 nM in the 76 T mutant group (no = 155). This difference was not significant (p = 0.875, Mann Whitney

U test).

Conclusions: The present work demonstrates that there was no cross-resistance between piperaquine and

chloroquine among 280 P. falciparum isolates and that piperaquine susceptibility is not associated with pfcrt, the

gene involved in chloroquine resistance. These results confirm the efficacy of piperaquine in association with

dihydroartemisinin and support its use in areas in which parasites are resistant to chloroquine.
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Background

Over the past 20 years, many strains of Plasmodium

falciparum have become resistant to chloroquine and

other anti-malarial drugs [1]. In 2002, the World Health

Organization (WHO) recommended that artemisinin-

based combination therapy (ACT) be used to treat all

cases of uncomplicated malaria. Different formulations

of ACT have been evaluated: artesunate-sulphadoxine-

pyrimethamine, artesunate-amodiaquine, artemether-

lumefantrine, artesunate-mefloquine, artesunate-

chlorproguanil-dapsone, artesunate-pyronaridine and,

more recently, dihydroartemisinin-piperaquine. Most of

these formulations are available as fixed-dose co-

formulations, which are convenient, facilitate improved

adherence and help prevent misuse.

Dihydroartemisinin-piperaquine (Artekin®, Duo-Cotecxin®,

Eurartesim®) is a new ACT that is administered as single

daily dose for three days and has been demonstrated to

be tolerated and highly effective for the treatment of uncom-

plicated malaria in Asia [2,3] and the treatment of

uncomplicated P. falciparum malaria in Africa [4,5].

Dihydroartemisinin-piperaquine seems to have a better

post-treatment prophylactic effect than artemether-

lumefantrine [6-8] or artesunate-amodiaquine [9]. Since

2012, dihydroartemisinin-piperaquine has been avail-

able for the treatment of uncomplicated malaria

in France.

Piperaquine, a bisquinoline, was used alone to replace

chloroquine as the first-line treatment for uncomplicated

malaria in China in response to increasing chloroquine

resistance in the 1970s. However, the rapid emergence

of piperaquine-resistant strains resulted in the cessation

of its use in China in the 1980s [10].

This rapid emergence of piperaquine-resistant strains

suggests that there is cross-resistance between piperaquine

and chloroquine. Very few data are available on cross-

resistance between piperaquine and chloroquine, and the

data that do exist are often contradictory. A positive sig-

nificant correlation was found for 63 isolates from the

China-Myanmar border area (r = 0.79, p < 0.0001) [11], 54

isolates from Papua New Guinea (r = 0.51, p < 0.001) [12]

and 103 isolates from Cameroon (r = 0.257, p < 0.05) [13],

whereas no significant correlation was observed for 199

isolates from Uganda (r = 0.121, p = 0.15) [14], 115

culture-adapted isolates from Kenya (r = 0.16, p = 0.13)

[15], 23 strains from 16 different countries (r = 0.199, p =

0.366) [16] or 181 isolates of imported malaria from 19

countries (r = 0.036, p = 0.634) [17]. In addition, very few

data are available on the association between piperaquine

susceptibility and polymorphisms in the gene involved in

chloroquine resistance, pfcrt (P. falciparum chloroquine

resistance transporter) [18].

The objectives of the present work were to evaluate the

cross-resistance between piperaquine and chloroquine in

280 fresh isolates of P. falciparum and to investigate the

association between piperaquine and chloroquine suscep-

tibility and the K76T mutation in pfcrt.

Methods

Patients and sample collection

In total, 280 P. falciparum isolates were collected between

April 2008 and June 2012 from patients hospitalized in

France with imported malaria from a malaria-endemic

country (Angola, Benin, Burkina Faso, Cameroon, Central

African Republic, Chad, Comoros, Congo, Ivory Coast,

Gabon, Gambia, Ghana, Guinea, India, Madagascar, Mali,

Mauritania, Mozambique, Niger, Senegal, Thailand, Togo,

Zambia). Informed consent was not required for this study

because the sampling procedures and testing are part of

the French national recommendations for the care and

surveillance of malaria. Venous blood samples were

collected in Vacutainer® ACD tubes (Becton Dickinson,

Rutherford, NJ, USA) before treatment and were trans-

ported at 4°C from French hospitals located in Aix en

Provence, Bordeaux, Chambery, Frejus, Grenoble, Lyon,

Marseille, Metz, Montpellier, Nice, Nimes, Pau, Toulon,

Toulouse, and Valence to the Institute of Biomedical

Research of the French Army (IRBA) in Marseille within

72 hours of collection. The Case Report Form was pro-

vided at the same time, either as a paper copy or

electronically.

Thin blood smears were stained using a RAL® kit (Réactifs

RAL, Paris, France) and were examined to determine

P. falciparum density and confirm mono-infection.

Parasitized erythrocytes were washed three times with

RPMI 1640 medium (Invitrogen, Paisley, UK) buffered

with 25 mM HEPES and 25 mM NaHCO3. If parasitaemia

exceeded 0.5%, infected erythrocytes were diluted to 0.5%

with uninfected erythrocytes (human blood type A+) and

re-suspended in RPMI 1640 medium supplemented with

10% human serum (Abcys S.A. Paris, France), for a final

haematocrit of 1.5%. The susceptibility of the 280 isolates

was assessed without culture adaptation.

Drugs

Piperaquine was obtained from Shin Poong Pharm Co.

(Seoul, Korea) and was dissolved first in methanol and

then diluted in water to obtain final concentration ranging

from 0.8 to 1,000 nM. Chloroquine was purchased from

Sigma (Saint Louis, MO, USA) and was dissolved first in

methanol and then diluted in water to final concentrations

ranging from 5 nM to 3,200 nM. Batches of plates were

tested and validated using the chloroquine-susceptible

3D7 strain (West Africa) and the chloroquine-resistant

W2 strain (Indochina) (MR4, Virginia, USA) in three to

six independent experiments using the conditions de-

scribed in the paragraph below. The two strains were syn-

chronized twice with sorbitol before use [19], and clonality
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was verified every 15 days using PCR genotyping of the

polymorphic genetic markers msp1 and msp2 and using

microsatellite loci [20,21] and additionally verified each

year by an independent laboratory from the Worldwide

Anti-malarial Resistance Network (WWARN).

Ex vivo assay

For ex vivo isotopic microtests, 200 μl/well of the sus-

pension of synchronous parasitized red blood cells (final

parasitaemia, 0.5%; final haematocrit, 1.5%) were dis-

tributed in 96-well plates pre-dosed with anti-malarial

drugs. Parasite growth was assessed by adding 1 μCi of

tritiated hypoxanthine with a specific activity of 14.1 Ci/

mmol (Perkin-Elmer, Courtaboeuf, France) to each well

at time zero. The plates were then incubated for

42 hours in controlled atmospheric conditions that con-

sisted of 10% O2, 5% CO2, and 85% N2 at 37°C with a

humidity of 95%. Immediately after incubation, plates

were frozen and then thawed to lyse erythrocytes. The

content of each well was collected on standard filter mi-

croplates (Unifilter GF/B; Perkin-Elmer) and washed

using a cell harvester (Filter-Mate Cell Harvester;

Perkin-Elmer). Filter microplates were dried, and 25 μl

of scintillation cocktail (Microscint O; Perkin-Elmer)

was placed in each well. Radioactivity incorporated in

nucleotides by the parasites was measured with a scin-

tillation counter (Top Count; Perkin-Elmer).

The drug concentration able to inhibit 50% of parasite

growth (IC50) was assessed by the drug concentration cor-

responding to 50% of the incorporation of tritiated hypo-

xanthine by the parasite in the drug-free control wells.

The IC50 value was determined by non-linear regression

analysis of log-based dose–response curves (Riasmart,

Packard, Meriden, USA).

Nucleic acid extraction

Total genomic DNA of each strain was isolated using

the QIAamp® DNA Mini kit according to the manufac-

turer’s recommendations (Qiagen, Germany).

Pfcrt single-nucleotide polymorphisms (SNPs)

A 546-nucleotide fragment of the Pfcrt gene (containing

codon 76) was amplified by PCR using CRTP1-sense 5′-

CCG TTA ATA ATA AATACA CGC AG-3′ and CRTP1-

antisense 5′-CGG ATG TTA CAA AAC TAT AGT TAC

C-3′ primers [22]. The reaction mixture for PCR amplifica-

tions included 2.5 μl of genomic DNA, 2.5 μl of 10X reac-

tion buffer (Eurogentec), 0.5 μM of each primer, 200 μM of

a deoxynucleoside triphosphate mixture (dGTP, dATP,

dTTP and dCTP) (Euromedex, Souffelweyersheim,

France), 2.5 mM MgCl2 and 1 unit of RedGoldStar®

DNA polymerase (Eurogentec) in a final volume of

25 μl. The thermal cycler (T3 Biometra, Archamps,

France) was programmed as follows: an initial 94°C

incubation for 5 min, 40 cycles of 94°C for 20 sec, 56°C

for 20 sec, 60°C for 40 sec, and a final 5-min extension

step at 60°C. The PCR products were loaded on a 1.5%

agarose gel containing 0.5 μg/mL ethidium bromide.

The PCR products were diluted 1:100 in distilled water, and

2.5 μl of the final dilution was used for the second PCR.

This PCR amplified a 275 bp segment around the mutation

using a common inner primer CRTP3-sense 5′-TGA CGA

GCG TTA TAG AG-3′ coupled with either CRTP4m-

antisense 5′-GTT CTT TTA GCA AAA ATT G-3′ (de-

tects the 76 T codon) or CRTP4w-antisense 5′-GTT CTT

TTA GCA AAA ATT T-3′ (detects the 76 K codon). The

reaction mixture for the PCR amplifications included

2.5 μl of diluted PCR product, 2.5 μl of 10X reaction buffer

(Eurogentec), 0.5 μM of each primer, 200 μM deoxynu-

cleoside triphosphate mixture (dGTP, dATP, dTTP and

dCTP) (Euromedex, Souffelweyersheim, France), 1.5 mM

MgCl2 and 0.75 U of RedGoldStar® DNA polymerase

(Eurogentec) in a final volume of 25 μl.

The PCR conditions were at 94°C for 5 min, 15 cycles at

94°C for 20 sec, 48.5°C for 20 sec, 64°C for 40 sec, and a

final 5-min extension step at 64°C. Purified genomic DNA

from P. falciparum clones 3D7 (chloroquine susceptible)

and W2 (chloroquine resistant) were used as positive con-

trols, and water and human DNA were used as negative

controls. The PCR products from the amplification reac-

tions were evaluated by electrophoresis on 2% agarose gels.

Statistical analysis

Data were analysed using R software (version 2.10.1). As-

sessment of standard anti-malarial drugs cross-resistance

between piperaquine and chloroquine drugs was mea-

sured by pairwise correlation of IC50 values of all isolates

and estimated by coefficient of correlation of Pearson (r)

and coefficient of determination (r2). Differences between

the chloroquine and piperaquine IC50 values of isolates

and Pfcrt K76T were compared using the Mann Whitney

U test.

Results

The IC50 for piperaquine ranged from 9.8 nM to 217.3 nM

(mean = 81.3 nM; 95% confidence interval 71.3-92.7). The

IC50 for chloroquine ranged from 5.0 nM to 1918 nM

(mean = 83.6 nM; 95% confidence interval 71.0-98.3). Fifty

three% of the isolates showed IC50 > 100 nM for chloro-

quine. A significant correlation was observed between the

Log IC50 values for piperaquine and chloroquine (r = 0.145,

p < 0.001) (Figure 1).

Of the 280 isolates, 125 were wild type (K76), and 155

were mutated (76T). The mean value for chloroquine IC50

was 31.3 nM (95% CI 25.4-38.7) in the wild-type group

and 184.5 (95% CI 157.4-215.8) in the mutant group. This

difference was significant (p = 0.001, Mann Whitney U

test). The mean value for piperaquine was 74.0 nM (95%
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CI 62.9-87.0) in the wild-type group and 87.7 (95% CI

71.9-106.9) in the mutant group. This difference was not

significant (p = 0.875, Mann Whitney U test).

Discussion

The IC50 for piperaquine ranged from 9.8 nM to 217.3

nM (mean = 81.3 nM; 95% confidence interval 71.3-92.7).

These values are greater than the geometric means for iso-

lates from Cameroon (geometric mean = 39 nM) [13], the

Thai-Burmese border (49 nM) [23], Kenya (50 nM) [15],

Uganda (6.1 nM) [14], Indonesia (21.8 nM) [24], and

Papua New Guinea [12]. The comparison of IC50s across

studies is likely hampered by different methodology in

assessing these. The isolate with the highest IC50 for piper-

aquine (217.3 nM) was also resistant to chloroquine

(1,029 nM). There is no consensus threshold indicating

piperaquine in vitro resistance or reduced susceptibility.

In vitro cross-resistance was assessed using the pairwise

correlation of the Log IC50 values of the 280 isolates

(Figure 1). A significant correlation was observed between

the Log IC50 values for piperaquine and chloroquine (r =

0.145, p <0.001). However, this value is too low to suggest

that there is cross-resistance between piperaquine and

chloroquine. For a correlation to imply that two com-

pounds share common mechanisms of action or resistance,

which could induce cross-resistance, the coefficient of de-

termination (r2) must be high. Here, the coefficient of de-

termination of 0.021 indicates that only 2.1% of the

variation in the response to piperaquine is explained by the

variation in the response to chloroquine. These data are in

accordance with the majority of the previous studies, which

found weak coefficients of determination [13-17]. This re-

sult suggests that piperaquine and chloroquine do not share

common mechanisms of resistance. However, positive sig-

nificant correlation was found for 63 isolates from the

China-Myanmar border area (r = 0.79, p < 0.0001) [11] and

54 isolates from Papua New Guinea (r = 0.51, p < 0.001)

[12]. This difference in in vitro cross-resistance might be

explained by the low sample numbers in these two studies

and by geographical strain differences.

As expected, the 76T mutation is associated with chloro-

quine resistance (p = 0.001, Kruskal-Wallis test). The mean

value for piperaquine was 74.0 nM (95% CI 62.9-87.0) in

the wild-type group and 87.7 (95% CI 71.9-106.9) in

the mutant group. This difference was not significant (p =

0.862, Kruskal-Wallis test). These data suggest that the

76T mutation is not associated with piperaquine-decreased

susceptibility. These data are in accordance with previous

data on 23 strains from 15 countries of Africa, Asia and

South America [16] and 115 isolates from Kenya [15]. The

absence of cross-resistance between piperaquine and

chloroquine may be explained by the absence of an associ-

ation between piperaquine resistance and pfcrt. The very

weak correlation between piperaquine and chloroquine re-

sponses (only 2.1% of the variation in the response to

piperaquine is explained by the variation in the response to

chloroquine) could be explained by other polymorphisms

involved in very minor way in chloroquine resistance, such

as pfmdr1 SNPs or copy number. Fieldwork has shown

that the predictive value for chloroquine resistance and

point mutations in the pfmdr1 sequence resulting in amino

acid changes varies depending on the geographic area

[25,26]. Point mutations, most notably N86Y, have

been associated with a decrease in the chloroquine sus-

ceptibility [27]. However, in some of these epidemio-

logical studies, the number of chloroquine-susceptible

samples is too limited to provide statistically meaning-

ful analysis [26,28]. Using precautions, no or only weak

relationships are established in P. falciparum between

chloroquine resistance and mutations in pfmdr1 [25].

However, previous works demonstrated that polymor-

phisms in pfmdr1 gene or copy number are not associ-

ated with decreased susceptibility to piperaquine

[11,15,16].

Figure 1 Pearson’s correlation analysis of the Log IC50 values of piperaquine and chloroquine.
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These field results are in contrast to experimental data

that showed that genetically modified parasites with

CVIET haplotypes had reduced susceptibility to pipera-

quine [29].

The present work demonstrated that piperaquine exhibits

currently no cross-resistance with chloroquine in African P.

falciparum isolates and that resistance to piperaquine is not

associated with pfcrt, the gene involved in chloroquine re-

sistance. The validity of this conclusion should be further

supported by analysing more isolates, especially from South

America and Asia. In addition, copy number variation of a

chromosome 5 region, a genetic marker associated with

high piperaquine IC50 in a piperaquine-selected P. falcip-

arum line [30], should be evaluated for reduced ex vivo sus-

ceptibility. Nevertheless, these results confirm the efficacy

of piperaquine in association with dihydroartemisinin and

support its use in areas in which parasites are resistant to

chloroquine.
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