A Mathematical Framework for the Registration and Analysis of Multi-Fascicle Models for Population Studies of the Brain Microstructure

Abstract : Diffusion tensor imaging (DTI) is unable to represent the diffusion signal arising from multiple crossing fascicles and freely diffusing water molecules. Generative models of the diffusion signal, such as multi-fascicle models, overcome this limitation by providing a parametric representation for the signal contribution of each population of water molecules. These models are of great interest in population studies to characterize and compare the brain microstructural properties. Central to population studies is the construction of an atlas and the registration of all subjects to it. However, the appropriate definition of registration and atlasing methods for multi-fascicle models have proven challenging. This paper proposes a mathematical framework to register and analyze multi-fascicle models. Specifically, we define novel operators to achieve interpolation, smoothing and averaging of multi-fascicle models. We also define a novel similarity metric to spatially align multi-fascicle models. Our framework enables simultaneous comparisons of different microstructural properties that are confounded in conventional DTI. The framework is validated on multi-fascicle models from 24 healthy subjects and 38 patients with tuberous sclerosis complex, 10 of whom have autism. We demonstrate the use of the multi-fascicle models registration and analysis framework in a population study of autism spectrum disorder.
Type de document :
Article dans une revue
IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2014, 33 (2), pp.504-517. 〈10.1109/TMI.2013.2289381〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00903679
Contributeur : Olivier Commowick <>
Soumis le : mardi 12 novembre 2013 - 17:15:47
Dernière modification le : mercredi 2 août 2017 - 10:10:50
Document(s) archivé(s) le : jeudi 13 février 2014 - 12:35:45

Fichier

taquet_tmi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Maxime Taquet, Benoit Scherrer, Olivier Commowick, Jurriaan Peters, Mustafa Sahin, et al.. A Mathematical Framework for the Registration and Analysis of Multi-Fascicle Models for Population Studies of the Brain Microstructure. IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2014, 33 (2), pp.504-517. 〈10.1109/TMI.2013.2289381〉. 〈inserm-00903679〉

Partager

Métriques

Consultations de
la notice

639

Téléchargements du document

401