B. Tang, ADAMTS: a novel family of extracellular matrix proteases, The International Journal of Biochemistry & Cell Biology, vol.33, issue.1, pp.33-44, 2001.
DOI : 10.1016/S1357-2725(00)00061-3

S. Apte, A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family, The International Journal of Biochemistry & Cell Biology, vol.36, issue.6, pp.981-985, 2004.
DOI : 10.1016/j.biocel.2004.01.014

C. Flannery, W. Zeng, C. Corcoran, L. Collins-racie, P. Chockalingam et al., Autocatalytic Cleavage of ADAMTS-4 (Aggrecanase-1) Reveals Multiple Glycosaminoglycan-binding Sites, Journal of Biological Chemistry, vol.277, issue.45, pp.42775-42780, 2002.
DOI : 10.1074/jbc.M205309200

E. Lin and C. Liu, The role of ADAMTSs in arthritis, Protein & Cell, vol.111, issue.1, pp.33-47, 2010.
DOI : 10.1007/s13238-010-0002-5

P. Wang, M. Tortorella, K. England, A. Malfait, G. Thomas et al., Proprotein Convertase Furin Interacts with and Cleaves Pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi Network, Journal of Biological Chemistry, vol.279, issue.15, pp.15434-15440, 2004.
DOI : 10.1074/jbc.M312797200

M. Tortorella, M. Pratta, R. Liu, I. Abbaszade, H. Ross et al., The Thrombospondin Motif of Aggrecanase-1 (ADAMTS-4) Is Critical for Aggrecan Substrate Recognition and Cleavage, Journal of Biological Chemistry, vol.275, issue.33, pp.25791-25797, 2000.
DOI : 10.1074/jbc.M001065200

J. Rodriguez-manzaneque, A. Milchanowski, E. Dufour, R. Leduc, and M. Iruela-arispe, Characterization of METH-1/ADAMTS1 Processing Reveals Two Distinct Active Forms, Journal of Biological Chemistry, vol.275, issue.43, pp.33471-33479, 2000.
DOI : 10.1074/jbc.M002599200

G. Gao, J. Westling, V. Thompson, T. Howell, P. Gottschall et al., Activation of the Proteolytic Activity of ADAMTS4 (Aggrecanase-1) by C-terminal Truncation, Journal of Biological Chemistry, vol.277, issue.13, pp.11034-11041, 2002.
DOI : 10.1074/jbc.M107443200

E. Majerus, X. Zheng, E. Tuley, and J. Sadler, Cleavage of the ADAMTS13 Propeptide Is Not Required for Protease Activity, Journal of Biological Chemistry, vol.278, issue.47, pp.46643-46648, 2003.
DOI : 10.1074/jbc.M309872200

G. Gao, A. Plaas, V. Thompson, J. S. Zuo, F. Sandy et al., ADAMTS4 (Aggrecanase-1) Activation on the Cell Surface Involves C-terminal Cleavage by Glycosylphosphatidyl Inositol-anchored Membrane Type 4-Matrix Metalloproteinase and Binding of the Activated Proteinase to Chondroitin Sulfate and Heparan Sulfate on Syndecan-1, Journal of Biological Chemistry, vol.279, issue.11, pp.10042-10051, 2004.
DOI : 10.1074/jbc.M312100200

S. Porter, I. Clark, L. Kevorkian, and D. Edwards, The ADAMTS metalloproteinases, Biochemical Journal, vol.386, issue.1, pp.15-27, 2005.
DOI : 10.1042/BJ20040424

M. Llamazares, C. S. Quesada, V. López-otín, and C. , Identification and Characterization of ADAMTS-20 Defines a Novel Subfamily of Metalloproteinases-Disintegrins with Multiple Thrombospondin-1 Repeats and a Unique GON Domain, Journal of Biological Chemistry, vol.278, issue.15, pp.13382-13389, 2003.
DOI : 10.1074/jbc.M211900200

A. Nicholson, S. Malik, J. Logsdon, V. Meir, and E. , Functional evolution of ADAMTS genes: evidence from analyses of phylogeny and gene organization, BMC Evolutionary Biology, vol.5, issue.1, p.11, 2005.
DOI : 10.1186/1471-2148-5-11

H. Stanton, J. Melrose, C. Little, and A. Fosang, Proteoglycan degradation by the ADAMTS family of proteinases, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1812, issue.12, pp.1616-1629, 2011.
DOI : 10.1016/j.bbadis.2011.08.009

A. Rolls, R. Shechter, and M. Schwartz, The bright side of the glial scar in CNS repair, Nature Reviews Neuroscience, vol.21, issue.3, pp.235-241, 2009.
DOI : 10.1016/j.neuron.2006.01.022

W. Yuan, R. Matthews, J. Sandy, and P. Gottschall, Association between protease-specific proteolytic cleavage of brevican and synaptic loss in the dentate gyrus of kainate-treated rats, Neuroscience, vol.114, issue.4, pp.1091-1101, 2002.
DOI : 10.1016/S0306-4522(02)00347-0

R. Miguel, A. Pollak, and G. Lubec, Metalloproteinase ADAMTS-1 but not ADAMTS-5 is manifold overexpressed in neurodegenerative disorders as Down syndrome, Alzheimer's and Pick's disease, Molecular Brain Research, vol.133, issue.1, pp.1-5, 2005.
DOI : 10.1016/j.molbrainres.2004.09.008

K. Jungers, L. Goff, C. Somerville, R. Apte, and S. , Adamts9 is widely expressed during mouse embryo development, Gene Expression Patterns, vol.5, issue.5, pp.609-617, 2005.
DOI : 10.1016/j.modgep.2005.03.004

M. Howell, A. Torres-collado, M. Iruela-arispe, and P. Gottschall, Selective Decline of Synaptic Protein Levels in the Frontal Cortex of Female Mice Deficient in the Extracellular Metalloproteinase ADAMTS1, PLoS ONE, vol.7, issue.10, p.47226, 2012.
DOI : 10.1371/journal.pone.0047226.s004

D. Krstic, M. Rodriguez, and I. Knuesel, Regulated Proteolytic Processing of Reelin through Interplay of Tissue Plasminogen Activator (tPA), ADAMTS-4, ADAMTS-5, and Their Modulators, PLoS ONE, vol.7, issue.10, p.47793, 2012.
DOI : 10.1371/journal.pone.0047793.s003

A. Cross, G. Haddock, J. Surr, J. Plumb, R. Bunning et al., Differential expression of ADAMTS-1, -4, -5 and TIMP-3 in rat spinal cord at different stages of acute experimental autoimmune encephalomyelitis, Journal of Autoimmunity, vol.26, issue.1, pp.16-23, 2006.
DOI : 10.1016/j.jaut.2005.09.026

G. Haddock, A. Cross, J. Plumb, J. Surr, D. Buttle et al., Expression of ADAMTS-1, -4, -5 and TIMP-3 in normal and multiple sclerosis CNS white matter, Multiple Sclerosis Journal, vol.435, issue.4, pp.386-396, 2006.
DOI : 10.1191/135248506ms1300oa

A. Cross, G. Haddock, C. Stock, S. Allan, J. Surr et al., ADAMTS-1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes, Brain Research, vol.1088, issue.1, pp.19-30, 2006.
DOI : 10.1016/j.brainres.2006.02.136

R. Tauchi, S. Imagama, T. Natori, T. Ohgomori, A. Muramoto et al., The endogenous proteoglycandegrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury, J Neuroinflammation, vol.9, p.53, 2012.

M. Hamel, J. Mayer, and P. Gottschall, Altered production and proteolytic processing of brevican by transforming growth factor ?? in cultured astrocytes, Journal of Neurochemistry, vol.114, issue.6, pp.1533-1541, 2005.
DOI : 10.1111/j.1471-4159.2005.03144.x

M. Hamel, J. Ajmo, C. Leonardo, F. Zuo, J. Sandy et al., Multimodal signaling by the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) promotes neurite extension, Experimental Neurology, vol.210, issue.2, pp.428-440, 2008.
DOI : 10.1016/j.expneurol.2007.11.014

D. Bonneh-barkay and C. Wiley, Brain Extracellular Matrix in Neurodegeneration, Brain Pathology, vol.79, issue.4, pp.573-585, 2009.
DOI : 10.1111/j.1750-3639.2008.00195.x

Y. Tian, W. Yuan, N. Fujita, J. Wang, H. Wang et al., Inflammatory Cytokines Associated with Degenerative Disc Disease Control Aggrecanase-1 (ADAMTS-4) Expression in Nucleus Pulposus Cells through MAPK and NF-??B, The American Journal of Pathology, vol.182, issue.6, pp.2310-2321, 2013.
DOI : 10.1016/j.ajpath.2013.02.037

J. Huh, B. Seo, Y. Park, J. Kim, J. Lee et al., WIN-34B, a new herbal medicine, inhibits the inflammatory response by inactivating I??B-?? phosphorylation and mitogen activated protein kinase pathways in fibroblast-like synoviocytes, Journal of Ethnopharmacology, vol.143, issue.3, pp.779-786, 2012.
DOI : 10.1016/j.jep.2012.06.041

Y. Mimata, A. Kamataki, S. Oikawa, K. Murakami, M. Uzuki et al., Interleukin-6 upregulates expression of ADAMTS-4 in fibroblast-like synoviocytes from patients with rheumatoid arthritis, International Journal of Rheumatic Diseases, vol.64, issue.1, pp.36-44, 2012.
DOI : 10.1111/j.1756-185X.2011.01656.x

C. Séguin, M. Bojarski, R. Pilliar, P. Roughley, and R. Kandel, Differential regulation of matrix degrading enzymes in a TNF??-induced model of nucleus pulposus tissue degeneration, Matrix Biology, vol.25, issue.7, pp.409-418, 2006.
DOI : 10.1016/j.matbio.2006.07.002

M. Reid, A. Cross, G. Haddock, S. Allan, C. Stock et al., ADAMTS-9 expression is up-regulated following transient middle cerebral artery occlusion (tMCAo) in the rat, Neuroscience Letters, vol.452, issue.3, pp.252-257, 2009.
DOI : 10.1016/j.neulet.2009.01.058

J. Zamanian, L. Xu, L. Foo, N. Nouri, L. Zhou et al., Genomic Analysis of Reactive Astrogliosis, Journal of Neuroscience, vol.32, issue.18, pp.6391-6410, 2012.
DOI : 10.1523/JNEUROSCI.6221-11.2012

K. Demircan, T. Yonezawa, T. Takigawa, V. Topcu, S. Erdogan et al., ADAMTS1, ADAMTS5, ADAMTS9 and aggrecanase-generated proteoglycan fragments are induced following spinal cord injury in mouse, Neuroscience Letters, vol.544, pp.25-30, 2013.
DOI : 10.1016/j.neulet.2013.02.064

M. Sasaki, S. Seo-kiryu, R. Kato, S. Kita, and H. Kiyama, A disintegrin and metalloprotease with thrombospondin type1 motifs (ADAMTS-1) and IL-1 receptor type 1 mRNAs are simultaneously induced in nerve injured motor neurons, Molecular Brain Research, vol.89, issue.1-2, pp.158-163, 2001.
DOI : 10.1016/S0169-328X(01)00046-8

T. Ashlin, A. Kwan, and D. Ramji, Regulation of ADAMTS-1, -4 and -5 expression in human macrophages: Differential regulation by key cytokines implicated in atherosclerosis and novel synergism between TL1A and IL-17, Cytokine, vol.64, issue.1, pp.234-242, 2013.
DOI : 10.1016/j.cyto.2013.06.315

D. Wågsäter, H. Björk, C. Zhu, J. Björkegren, G. Valen et al., ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques, Atherosclerosis, vol.196, issue.2, pp.514-522, 2008.
DOI : 10.1016/j.atherosclerosis.2007.05.018

P. Ren, L. Zhang, G. Xu, L. Palmero, P. Albini et al., ADAMTS-1 and ADAMTS-4 Levels Are Elevated in Thoracic Aortic Aneurysms and Dissections, The Annals of Thoracic Surgery, vol.95, issue.2, pp.570-577, 2013.
DOI : 10.1016/j.athoracsur.2012.10.084

J. Westling, P. Gottschall, V. Thompson, A. Cockburn, G. Perides et al., ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate binding protein, Biochemical Journal, vol.377, issue.3, pp.787-795, 2004.
DOI : 10.1042/bj20030896

A. Didangelos, U. Mayr, C. Monaco, and M. Mayr, Novel Role of ADAMTS-5 Protein in Proteoglycan Turnover and Lipoprotein Retention in Atherosclerosis, Journal of Biological Chemistry, vol.287, issue.23, pp.19341-19345, 2012.
DOI : 10.1074/jbc.C112.350785

I. Diamantis, M. Lüthi, M. Hösli, and J. Reichen, Cloning of the rat ADAMTS-1

Y. Hsu, C. Staton, N. Cross, and D. Buttle, Anti-angiogenic properties of ADAMTS-4 in vitro, International Journal of Experimental Pathology, vol.4, issue.1, pp.70-77, 2012.
DOI : 10.1111/j.1365-2613.2011.00802.x

D. Basile, K. Fredrich, B. Chelladurai, E. Leonard, and A. Parrish, Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor, AJP: Renal Physiology, vol.294, issue.4, pp.928-936, 2008.
DOI : 10.1152/ajprenal.00596.2007

P. Lo, H. Lung, A. Cheung, S. Apte, K. Chan et al., Extracellular Protease ADAMTS9 Suppresses Esophageal and Nasopharyngeal Carcinoma Tumor Formation by Inhibiting Angiogenesis, Cancer Research, vol.70, issue.13, pp.5567-5576, 2010.
DOI : 10.1158/0008-5472.CAN-09-4510

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896444

S. Kumar, S. Sharghi-namini, N. Rao, and R. Ge, ADAMTS5 Functions as an Anti-Angiogenic and Anti-Tumorigenic Protein Independent of Its Proteoglycanase Activity, The American Journal of Pathology, vol.181, issue.3, pp.1056-1068, 2012.
DOI : 10.1016/j.ajpath.2012.05.022

J. Lafuente, N. Ortuzar, H. Bengoetxea, S. Bulnes, and E. Argandoña, Vascular Endothelial Growth Factor and Other Angioglioneurins, Int Rev Neurobiol, vol.102, pp.317-346, 2012.
DOI : 10.1016/B978-0-12-386986-9.00012-0

L. Lau, M. Keough, S. Haylock-jacobs, R. Cua, A. Döring et al., Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination, Annals of Neurology, vol.31, issue.3, pp.419-432, 2012.
DOI : 10.1002/ana.23599

J. Siebert, D. Stelzner, and D. Osterhout, Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells, Experimental Neurology, vol.231, issue.1, pp.19-29, 2011.
DOI : 10.1016/j.expneurol.2011.05.002

C. Hobohm, A. Günther, J. Grosche, S. Rossner, D. Schneider et al., Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats, Journal of Neuroscience Research, vol.23, issue.4, pp.539-548, 2005.
DOI : 10.1002/jnr.20459

L. Gherardini, M. Gennaro, and T. Pizzorusso, Perilesional Treatment with Chondroitinase ABC and Motor Training Promote Functional Recovery After Stroke in Rats, Cerebral Cortex, vol.25, issue.1, 2013.
DOI : 10.1093/cercor/bht217

J. Hill, J. K. Mao, X. Xie, L. Greenberg, and D. , Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats, Proceedings of the National Academy of Sciences, vol.109, issue.23, pp.9155-9160
DOI : 10.1073/pnas.1205697109

S. Soleman, P. Yip, D. Duricki, and L. Moon, Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats, Brain, vol.135, issue.4, pp.1210-1223, 2012.
DOI : 10.1093/brain/aws027

J. Zuo, D. Neubauer, K. Dyess, T. Ferguson, and D. Muir, Degradation of Chondroitin Sulfate Proteoglycan Enhances the Neurite-Promoting Potential of Spinal Cord Tissue, Experimental Neurology, vol.154, issue.2, pp.654-662, 1998.
DOI : 10.1006/exnr.1998.6951

J. Zuo, D. Neubauer, J. Graham, C. Krekoski, T. Ferguson et al., Regeneration of Axons after Nerve Transection Repair Is Enhanced by Degradation of Chondroitin Sulfate Proteoglycan, Experimental Neurology, vol.176, issue.1, pp.221-228, 2002.
DOI : 10.1006/exnr.2002.7922

E. Bradbury and L. Carter, Manipulating the glial scar: Chondroitinase ABC as a therapy for spinal cord injury, Brain Research Bulletin, vol.84, issue.4-5, pp.306-316, 2011.
DOI : 10.1016/j.brainresbull.2010.06.015

E. Bradbury, L. Moon, R. Popat, V. King, G. Bennett et al., Chondroitinase ABC promotes functional recovery after spinal cord injury, Nature, vol.416, issue.6881, pp.636-640, 2002.
DOI : 10.1038/416636a

V. Tom, H. Sandrow-feinberg, K. Miller, L. Santi, T. Connors et al., Combining Peripheral Nerve Grafts and Chondroitinase Promotes Functional Axonal Regeneration in the Chronically Injured Spinal Cord, Journal of Neuroscience, vol.29, issue.47, pp.14881-14890, 2009.
DOI : 10.1523/JNEUROSCI.3641-09.2009

R. Cua, L. Lau, M. Keough, R. Midha, S. Apte et al., Overcoming neurite-inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix, Glia, vol.154, issue.Part 5, pp.972-984, 2013.
DOI : 10.1002/glia.22489

J. Siebert and D. Osterhout, The inhibitory effects of chondroitin sulfate proteoglycans on oligodendrocytes, Journal of Neurochemistry, vol.154, issue.1, pp.176-188, 2011.
DOI : 10.1111/j.1471-4159.2011.07370.x

M. Sasaki, K. Lankford, C. Radtke, O. Honmou, and J. Kocsis, Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments, Experimental Neurology, vol.229, issue.1, pp.88-98, 2011.
DOI : 10.1016/j.expneurol.2011.01.010

A. Mayeur, C. Duclos, A. Honoré, M. Gauberti, L. Drouot et al., Potential of Olfactory Ensheathing Cells from Different Sources for Spinal Cord Repair, PLoS ONE, vol.27, issue.4, p.62860, 2013.
DOI : 10.1371/journal.pone.0062860.t001

N. Guérout, C. Derambure, L. Drouot, N. Bon-mardion, C. Duclos et al., Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa, Glia, vol.2825, issue.Pt 1, pp.1570-1580, 2010.
DOI : 10.1002/glia.21030

N. Lim, M. Kashiwagi, R. Visse, J. Jones, J. Enghild et al., Reactive-site mutants of N-TIMP-3 that selectively inhibit ADAMTS-4 and ADAMTS-5: biological and structural implications, Biochemical Journal, vol.431, issue.1, pp.113-122, 2010.
DOI : 10.1074/jbc.M401310200

URL : https://hal.archives-ouvertes.fr/hal-00517252

R. Daneman, The blood-brain barrier in health and disease, Annals of Neurology, vol.23, issue.suppl 1, pp.648-672, 2012.
DOI : 10.1002/ana.23648

C. Pardeshi and V. Belgamwar, integrated nerve pathways bypassing the blood???brain barrier: an excellent platform for brain targeting, Expert Opinion on Drug Delivery, vol.293, issue.7, pp.957-972, 2013.
DOI : 10.2174/187221109787158355