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Abstract 

Objective Aflibercept (Zaltrap®) is a novel anti-angiogenic agent that binds to vascular 

endothelial growth factor (VEGF) and inhibits VEGF-dependent tumor growth. We aimed to 

characterize the population pharmacokinetics (PK) of free and bound aflibercept in patients with 

solid tumors, to examine the influence of covariates on their PK and to evaluate the proposed 

dosing regimens by simulation. 

Methods Data from 9 clinical trials with 1506 cancer patients receiving aflibercept (2-9 mg/kg 

every 2 or 3 weeks; 1 hour IV infusion) as a monotherapy or in combination with various 

chemotherapies were included. Free and bound aflibercept concentrations were analyzed using a 

nonlinear mixed-effects modeling approach with MONOLIX 4.1.2.  

Results An approximation of a target mediated-drug disposition model with irreversible binding 

of free aflibercept to VEGF adequately described the PK of free and bound aflibercept. The 

typical estimated clearances for free (CLf) and bound aflibercept (CLb) were 0.88 and 0.19 L/day, 

respectively. The volumes of distribution for free (Vp) and bound (Vb) aflibercept were similar 

(~4 L). CLf and Vp increased with body weight and were lower in women. Patients with low 

albumin (ALB) or high alkaline phosphatase (ALK) had faster CLf compared to a typical patient. 

Pancreatic cancer may be associated with changes in binding of aflibercept to VEGF. Simulations 

of different dosing regimens showed that adequate saturation of circulating VEGF was achieved 

with a dose of 4 mg/kg every 2weeks. 

Conclusions Aflibercept kinetics was most affected by gender, body weight, ALB, ALK and 

pancreatic cancer. Simulations supported the rationale for the recommended dose of 4 mg/kg 

every 2 weeks for aflibercept. 
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Introduction 

Malignant tumors are dependent on angiogenesis to maintain a source of nutrition and oxygen 

supporting their growth and metastasis [1]. Vascular endothelial growth factor (VEGF) is a 

homodimeric protein that activates two high-affinity receptors on the vascular endothelium 

(VEGFR1 and VEGFR2), promoting the formation of blood vessels that are required for normal 

and neoplastic tissue growth. VEGF has become a major target for anti-angiogenic therapy in 

managing cancers because its overexpression in several tumor types is associated with increased 

tumor vascularity, proliferation, progression, invasion, metastasis, and poor prognosis [2-4]. 

Preclinical studies have shown that inhibition of VEGF results in tumor growth inhibition in 

several human tumor xenografts in the nude mouse model, including colorectal cell lines [5]. 

Aflibercept (known as ziv-aflibercept in the United States; Sanofi, Paris, France, and Regeneron 

Pharmaceuticals, Tarrytown, NY) is a novel antiangiogenic agent [6]. It is a recombinant protein 

consisting of human VEGF receptor extracellular domains (domain 2 from VEGFR1 and domain 

3 from VEGFR2) fused to the Fc portion of human immunoglobulin G1 (IgG1). Aflibercept 

binds to all isoforms of VEGF-A, VEGF-B and to placental growth factor (PlGF) [7]. It interferes 

with the biological actions of VEGF by forming a complex with VEGF in the blood stream and 

extravascular space and preventing it from interacting with its receptors on endothelial cells. The 

affinity of aflibercept for VEGF-A (Kd in vitro = 0.5 pM) is higher than that of anti-VEGF 

monoclonal antibodies, such as bevacizumab (Kd in vitro = 500 pM) [8,9]. 

Preclinical studies in mice have demonstrated the effects of aflibercept on capillary regression, 

narrowing of vessels, blood flow cessation as well as endothelial cell apoptosis [10]. Inhibition of 

tumor growth and tumor angiogenesis, inhibition of metastases and improved survival have been 

observed with aflibercept in tumor xenografts for various cancers [6,11,12]. Phase I dose-

escalation studies, Phase II and Phase III trials have explored the antitumor activity of aflibercept 

as a single agent or in combination with a number of chemotherapy agents/regimens, including in 

patients with non-small cell lung, ovarian, pancreatic and colorectal cancers [6,13-16]. Recently, 

aflibercept at 4 mg/kg every 2 weeks plus FOLFIRI (combination of 5-fluorouracil, leucovorin 

and irinotecan) has been demonstrated to improve overall survival, progression-free survival and 

response rate in patients with metastatic colorectal cancer [17-19].  
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During clinical development, data is accrued from different sources, such as phase I trials in 

healthy subjects and phase I to III trials in cancer patients. Modelling pharmacokinetic (PK) data 

allows us to integrate data from different clinical trials to update our knowledge about aflibercept 

and support drug development strategy. Following this approach, a population PK study was 

initiated with the aim of characterising the PK of aflibercept and quantifying parameter changes 

in different populations.  

Previously, we reported the results of a population PK analysis of free and VEGF-bound 

aflibercept in 56 healthy subjects receiving single intravenous (i.v.) doses of 1 to 4 mg/kg 

recruited in two phase I clinical studies [20]. An approximation of a target mediated-drug 

disposition (TMDD) model with Michaelis-Menten (MM) type binding of free aflibercept to 

VEGF in the peripheral compartment was used to describe the PK profile of both free and bound 

aflibercept. This model adequately characterized the nonlinear binding of aflibercept to VEGF in 

this healthy subject population.  

The objectives of this analysis were (i) to characterize the population PK of free and bound 

aflibercept in cancer patients by extending the model developed in healthy subjects; (ii) to 

investigate covariates that could influence their PK and (iii) to evaluate various dosing regimens 

by simulation. 

 
Methods 

Patient population and study design 

A total of 9 clinical trials of aflibercept from Phase I to Phase III in 1506 patients with advanced 

solid tumors were included in the population analysis. Aflibercept was used as a single agent in 4 

trials and in combination with cytotoxic chemotherapy regimens in 5 trials. A summary of 

clinical trials included in the analysis is given in Table 1. Phase I trials were conducted in patients 

with various types of solid tumors while Phase II and Phase III trials were conducted in patients 

with ovarian, pancreatic, lung and colorectal cancer. In these studies, aflibercept was 

administered as a 1 hour i.v. infusion at dose levels ranging from 2 to 7 mg/kg every 2 or 3 weeks 

and up to 9 mg/kg in every 3 weeks schedule only. Dose adjustments and/or cycle delays were 
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permitted in case of toxicity. An intensive PK sampling scheme was implemented in Phase I 

studies as presented in Table 1. For Phase II and Phase III trials, PK samples were collected pre-

dose and at the end of aflibercept infusion on Day 1 (Cycle 1), then every odd cycle before 

treatment administration and at approximately 30 and 90 days after the last aflibercept treatment. 

All study protocols were in accordance with recommendations of the 18th World Health 

Congress (Helsinki, 1964) and complied with the laws and regulations, as well as any applicable 

guidelines, of the countries where the studies were conducted. All patients gave written informed 

consent.  

Assay method  

For all clinical trials, free aflibercept and bound aflibercept (VEGF:aflibercept complex) plasma 

concentrations were measured using enzyme-linked immunosorbent assay (ELISA) method. The 

anti-drug-antibodies (ADA) were also detected by a titer-based, bridging immunoassay to 

evaluate the potential effect of immunogenicity on the PK of aflibercept. Blood samples were 

collected in tubes (containing 1 mL of citrate buffer, sodium citrate, and 4.2 mg of citric acid) 

and were centrifuged at 2000 g for 15 minutes at room temperature. Plasma was stored at -80°C 

until analyzed. 

In the assay of free aflibercept, human VEGF165 initially adsorbed to the surface of a polystyrene 

solid support was used to capture free aflibercept in the samples and then bound to a mouse anti-

human specific VEGFR-1 monoclonal antibody. After that, the immobilized murine monoclonal 

complex was bound to a goat antimouse IgG antibody conjugated to Horseradish Peroxidase for 

detection. The limit of quantification (LOQ) for free aflibercept in plasma was initially 31.3 

ng/mL (for TED6115/TED6116), and then 15.6 ng/mL (for subsequent studies).  

The assay of bound aflibercept was similar to that of free aflibercept, except for the use of the 

anti-human VEGF165 antibody instead of human VEGF165 a as the capture reagent in the coated 

plate. The LOQ for bound aflibercept in plasma was 43.9 ng/mL.  

Since bound aflibercept contains one molecule of endogenous VEGF and one molecule of 

aflibercept, bound aflibercept concentrations were expressed as free aflibercept equivalents for 
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PK analyses using 0.717, the ratio of molecular weights between free and bound aflibercept. The 

units of free and bound aflibercept concentrations were µg/mL and µg.eq/mL, respectively. 

Population pharmacokinetic analysis 

The population PK analysis was performed using a nonlinear mixed-effects modeling approach 

with MONOLIX 4.1.2 [21] implementing the SAEM algorithm [22]. The model control files 

were written using MLXTRAN script. Graphical analyses for model evaluation were performed 

with R 2.14.1. 

Structural model  

The previous population PK analysis of free and bound aflibercept in healthy subjects 

demonstrated that the irreversible MM (IB-MM) approximation of TMDD model was the best 

PK model for aflibercept. This model is shown in Figure 1 and includes 2 compartments for free 

aflibercept, 1 compartment for bound aflibercept and irreversible MM type binding of free 

aflibercept to VEGF in the peripheral compartment [20]. In addition, the dissociation rate 

constant (koff) which gives back free aflibercept and free VEGF was assumed to be negligible and 

is not represented on the Figure 1. The same model was applied to patient data. 

In this model, the concentration of free aflibercept in central compartment (Cp), in tissue 

compartment (Ct) and the concentration of bound aflibercept (Cb) are described by the following 

system of differential equations: 
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Vt (L) is the peripheral volume of distribution of free aflibercept, Vb (L) is the volume of 

distribution of bound aflibercept, Vmax (mg/day) is the maximum binding capacity, Km (µg/mL) is 

the concentration of free aflibercept corresponding to half of maximum binding capacity. 

The clearances of free and bound aflibercept (CLf and CLb) and the intercompartmental clearance 

of free aflibercept (Q) between the central and the peripheral compartments are derived from the 

micro-constant as follows: 

��� = ��� . 	
 

��� = ��
� . 	� 

� = ��
. 	� = �
� . 	
 

 
The parameters to be estimated in this model are: CLf, Vp, Q, Vt, CLb, Vb, Vmax, and Km. 

Statistical model 

Denoting f the function describing the PK structural model, the statistical model for observed 

concentration Cij of subjects i for sampling time tij is:  

                                                       ��� = ����, ���� + ��� 

where ��	is the vector of parameters of subject i and ��� is the residual error. 

The interindividual variability (IIV) on all parameters was modeled with an exponential model, 

implying a log-normal distribution for the parameters, e.g. for CL: 

                                                           ��� = ��	����,� 

where ηCL,i denotes the random effect in subject i,  CLi the individual clearance parameter and CL 

the typical value of the population. Random effects were assumed to follow a normal distribution 

with zero mean and variance matrix Ω, which was modeled as diagonal. 

The residual variability was modeled using a combined additive and proportional model for both 

free and bound aflibercept. The residual errors for free aflibercept (ε free,ij) and bound aflibercept 

(ε bound,ij) are assumed to be independent and normally distributed with mean zero and a 

heteroscedastic variance σ² free,ij  and σ² bound,ij  respectively, given by:   
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                                                   �� ��,��! = (��# + ��
�(��, ���))² 

��&'
(,��! = (��# + ��
�(�� , ���))² 

where σ fa and σ fp are respectively the additive and proportional coefficients of the residual error 

model of free aflibercept; σ ba and σ bp are respectively the additive and proportional coefficients 

of the residual error model of bound aflibercept.  

Estimation of potential interoccasion variability (IOV) was not performed in this analysis because 

the data was very sparse, containing a trough concentration every two cycles for 90% of the 

patients.  

The variability models were investigated. For parameters with an estimated low level of IIV, we 

tested whether IIV could be removed from the model. The likelihood ratio test was used to 

discriminate between variability models through the difference in log likelihood (-2LL), 

computed using important sampling [23]. A p-value of 0.05 was considered statistically 

significant. 

Covariate analysis 

The covariate analysis was performed after obtaining the base model and focused on the main 

parameters describing the PK of free and bound aflibercept and their binding to VEGF: CLf, Vp, 

Vmax, Km and CLb. 

The following covariates were included in the analysis: patient demographics (age, gender, 

weight and ethnicity), laboratory measurements at baseline (albumin (ALB), serum alkaline 

phosphatase (ALK), total bilirubin (BIL), aspartate amino transferase (AST), alanine amino 

transferase (ALT), total protein (TP), and creatinine clearance (CLCR)) and concomitant 

chemotherapy (irinotecan/5-FU/LV in TCD6118, docetaxel in VITAL and TDC6120, 

gemcitabine in VANILLA and FOLFIRI in VELOUR).  

In this work, the effect of study and the effect of cancer type were not tested as these were 

confounded with the effect of chemotherapy (see Table 1). The effect of baseline endogenous 
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VEGF concentrations on PK aflibercept would have been interesting to investigate; however the 

large amount of missing values (62% of patients) precluded this as a covariate in the modeling.   

The parameter-covariate relationships were modeled multiplicatively as follows (e.g. for CL):      

                   ��� = �� ) *+,�
*+,-./�01

2
3
����,�      for continuous covariates 

where β are the regression coefficient to be estimated, �4	5�(�#
	is the median value of 

covariates.  

or         ��� = ��. �3.*+,�����,�              for dichotomous covariates �4	�	taking 0 or 1 values 

 

The construction of the covariate model was performed with hypothesis testing using the Wald 

test [24] in two steps: 

- Step 1: For covariate screening, each potential parameter-covariate relationship was included 

one by one in the base model and the parameters were estimated. The significance of a covariate 

effect was then assessed using the Wald test.  

- Step 2: All the significant covariates were included in the base model. The final model was built 

using a backward stepwise procedure by removing the non-significant covariates one by one, 

starting from the full model and removing the effect having the largest non-significant p-value of 

the Wald test. This step was repeated until only significant covariates remain in the model.  

A p-value of 0.05 was considered statistically significant in both steps. 

Model evaluation   

Internal evaluation of the model was based on goodness-of-fit (GOF) plots, including plots of 

observations versus individual and population predictions. Plots of normalized prediction 

distribution error (NPDE) [25,26] versus time since last dose (TimeL) were used to assess model 

predictive performance, based on the simulation of 1000 datasets. The NPDE plots with 95% 

prediction intervals around the 10th, 50th and 90th percentiles were generated using the package 

NPDE 2.0 for R [27]. We also computed the η-shrinkage for each parameter and ε-shrinkage 

separately for free and bound aflibercept data to quantify the amount of information in the 
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individual data about the parameters [28]. Model evaluation was performed for both the base 

model and the final model. 

Model-based simulations 

In order to compare the time course of free and bound aflibercept concentrations after different 

dosing regimens (2, 4 or 6 mg/kg q2wk or q3wk), the estimates of the fixed and random effects 

obtained in the final model were used to simulate the steady-state PK profiles of free and VEGF-

bound aflibercept in 1000 virtual patients. To mimic the actual treated population, the covariates 

were obtained by resampling 1000 patients from the 1506 patients in the study and collecting the 

set of covariates characterising each patient. The median bound concentrations of different doses 

for every 2 and 3 weeks regimens were compared to evaluate the optimal dosing regimen for 

achieving VEGF blockade. The median, 5th and 95th percentiles of free and bound aflibercept 

concentrations versus time were plotted for the recommend dose (4 mg/kg q2wk) to confirm the 

saturation of the binding of free aflibercept to VEGF during the treatment period. 

 

Results 

Demographics 

The database for this population PK analysis consisted of 1506 patients including 151 patients 

from Phase I studies, 282 patients from Phase II studies and 1073 patients from Phase III studies. 

Patients found to be ADA positive were only found to have low titer levels and ADA positivity 

did not result in any observed impact on aflibercept PK (data not shown). As the result, all ADA 

positive patients (less than 5% of the analysis population) including those found to be ADA 

positive only at baseline were included in this analysis. The characteristics of these patients are 

shown in Table 2.  

 

The majority of patients included in this analysis were Caucasians aged 65 years old and over and 

equally balanced between genders. Almost all the patients had normal renal function (CLCR: >80 

mL/min) or mild renal dysfunction (CLCR: 50-80 mL/min). In this analysis, approximately one 

third of the patients had colorectal cancer, one third had lung cancer and the remaining third had 

other various solid tumors. Most patients received aflibercept in combination with chemotherapy. 
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Approximately 90% of patients were recruited in phase II and III studies and had limited 

pharmacokinetic sampling with only one peak and multiple trough concentrations of free and 

bound aflibercept.  

Population pharmacokinetic model building 

Base model development was performed using a data set including 1506 patients with 7916 free 

aflibercept concentrations and 6977 bound aflibercept concentrations greater than LOQ. The 

below quantification limit (BQL) data for free aflibercept (5.7%) and bound aflibercept (17.2%) 

were omitted in this analysis. The concentrations of both free and bound aflibercept were 

measured for 1378 patients while only free aflibercept concentrations were available for 128 

remaining patients. 

The TMDD model with IB-MM approximation previously developed in healthy subjects 

provided an adequate fit to the PK data of both free and bound aflibercept in patients. The IIV on 

maximum binding capacity (Vmax) was found to be small (6%) and poorly estimated. Removing 

the variability for this parameter did not degrade the fit, with even a decrease of 5 points in -2LL 

values, probably as a result of improved model stability and estimation of other parameters. A 

combined additive and proportional residual error was retained for both free and bound 

aflibercept. The parameter estimates of the base model are shown in Table 3. Both fixed and 

random effects were precisely estimated with relative standard errors (RSEs) of less than 22%. 

The η-shrinkage was large for most parameters, reflecting the lack of information in the patients 

with sparse sampling, representing 90% of the subjects in the pooled dataset: CLf (37%), Vp 

(69%), Q (86%), Vt (64%), Vb (73%), Km (95%), CLb (48%). The ε-shrinkage was 23 % for the 

data of free aflibercept and 19% for the data of bound aflibercept.  

Seventeen potential covariates were evaluated for aflibercept by testing them on CLf, Vp, Km, and 

CLb in the base model. They were not tested on Vmax as its IIV was set to zero. Based on the Wald 

test of the univariate analysis using modeling, the following covariates were found to have an 

influence on PK parameters and were considered for inclusion in the model: gender, age, weight, 

CLCR, ALB, ALK, AST, ALT and all the concomitant chemotherapies. Ethnicity appeared to 

have no significant effect on aflibercept PK. After removing non significant covariates one by 
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one starting from the full model, the final model was achieved, with parameter estimates and the 

coefficients of all significant covariates presented in the Table 3.  

The parameters in the final model were estimated with reasonable precision:  RSEs ≤ 10% for PK 

parameters, RSEs ≤ 42% for random effects and RSEs ≤ 46% for the coefficients of the 

significant covariates. The PK parameter estimates of the final model were similar to those of the 

base model. In the final model, the typical estimated clearance for free aflibercept was about 4.6 

times faster than that of bound aflibercept (0.88 and 0.19 L/day, respectively). The volumes of 

distribution for free aflibercept (Vp) and bound aflibercept (Vb) were similar (~ 4 L). The 

maximum binding capacity was 0.82 mg/day and the concentration of free aflibercept 

corresponding to half of maximum binding capacity in this patient data set was 1.92 µg/mL.  

The IIV on model parameters was moderate to high, ranging from 22.3% (CLb) to 85.5% (CLf). 

There was a small decrease in the estimates of the variabilities of all parameters, except Q and Vt 

when including covariates in the model. Residual variability was moderate for free aflibercept 

(proportional errors of 32.9%) but low for bound aflibercept (proportional errors of 9.01%).  

The goodness-of-fit plots of the final model with covariates are shown in Figures 2 and 3. The 

plots of observations versus population and individual predictions (Figure 2) indicated that the 

model adequately described the observations despite an underprediction of high concentrations of 

free aflibercept. The plots of NPDE versus time since last dose (timeL) are presented in Figure 3 

for the duration of the study (timeL≤ 22 weeks). Here, NPDE plots are more appropriate than 

VPC (visual predictive check) plots because of the heterogeneity in sample times and doses 

[25,26]. An inset is shown plotting only the data for 6 weeks after the last treatment (timeL≤ 6 

weeks), which was the period of time where most of the observations were collected. The NPDE 

plots showed a symmetric distribution around zero for both free and bound aflibercept. The 

prediction bands indicated good model adequacy except for two issues. First, prediction intervals 

appear to be too large at timeL≥ 14 weeks; this could be an artifact due to the small number of 

measurements late after the last dose. Second, the variability at early times for bound aflibercept 

is underestimated; this could be a consequence of the BQL data not being included in the 

database. Individual plots for free and bound aflibercept are shown in Figure 4 for 4 subjects 

from 4 different studies. For most subjects, the model described reasonably well the observations 

for both free and bound aflibercept.  
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Assessment of covariate effects 

The magnitude of the effect of covariates on aflibercept PK parameters in the final model is 

shown in Table 4. Gender, body weight, ALB and ALK had the largest effects on CLf. CLf 

increased 12% for patients with a WT of 99 kg compared to the value of a typical 70 kg male 

subject and was 14% smaller in women compared to men. A patient with low serum ALB 

(normalized ALB of 0.57) would be expected to have 14.06% faster CLf while patients with a 

high concentration of ALK (normalized ALK of 1.01) would have a 14.41% faster CLf compared 

to a patient with median values of ALB and ALK. Gender and body weight also had significant 

effects on Vp with a 14.6% increase for a WT of 99 kg and a 19% decrease in women. 

Conversely, the covariate effects on CLb were very small with less than 10% changes in CLb 

compared to a typical subject, except for the effect of chemotherapy for irinotecan/5-FU/LV with 

a decrease of 12% of CLb. The most important covariate associated with a change in the binding 

kinetics of aflibercept to VEGF, expressed by the irreversible binding constant Km, was observed 

in patients with pancreatic cancer treated with gemcitabine in the study VANILLA. These 

patients had a Km increased by 82% compared to the typical patient receiving aflibercept as a 

monotherapy. A decrease of 20% in Km was also observed in women compared to typical men 

while an increase in Km was also observed in patients with high level of ALT or low level of AST 

compared to the typical patient. However, the high positive correlation between ALT and AST 

implies a small overall effect on Km, with less than 10% of change compared to the typical value 

of 1.92. Combining all the covariate effects on Km explained 31.5 % of the IIV in this parameter. 

For other parameters, the covariate effects explained very little the IIV on their parameters: 

12.2% for CLf, 16.4% for Vp and 5% for CLb. 

Simulation of various dosing regimens 

The final PK model was used to simulate the concentration-time courses at steady-state of free 

and bound aflibercept for 1000 virtual patients receiving 8 doses of 2, 4 or 6 mg/kg every 2 

weeks or 6 doses of 2, 4 or 6 mg/kg every 3 weeks. Figure 5 presents the predicted median 

profiles of bound aflibercept at steady-state for these different dosing regimens. Similar bound 

aflibercept levels were observed between 4 mg/kg and 6 mg/kg for q2wk regimen, indicating 

saturation of binding of aflibercept to circulating VEGF was reached at doses ≥ 4 mg/kg. In 

addition, same bound aflibercept levels were shown between the 4 mg/kg q2wk regimen and the 
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6 mg/kg q3wk regimen, suggesting similar saturation of circulating VEGF for these two 

regimens. The predicted steady-state concentrations of free and bound aflibercept are presented in 

Figure 6. It illustrated that the free aflibercept concentrations remain greater than bound 

aflibercept concentrations throughout all the dosing intervals in most patients receiving 4 mg/kg 

q2wk. As aflibercept binds to VEGF with a 1:1 ratio, maintaining free drug concentrations above 

bound drug concentrations throughout the dosing intervals would maximize binding of 

aflibercept to endogenous VEGF. 

Discussion 

In this study, we present a population PK analysis of free and bound aflibercept in 1506 patients 

with advanced solid tumors from 9 clinical trials. Aflibercept was administered intravenously 

every two weeks as a single agent, every two or three weeks in combination with various 

chemotherapy drugs at dose levels ranging from 2 to 7 mg/kg and up to 9 mg/kg in the every 3 

weeks schedule only. The influence of covariate effects on aflibercept pharmacokinetics was 

studied and quantified.  

Based on the mechanism of action, aflibercept exhibits a target-mediated drug disposition 

(TMDD) as the binding of the drug to the target influence the pharmacokinetics of the drug. A 

general TMDD model describes the elimination pathway of drug plasma concentrations as the 

combination of first-order elimination from the central compartment and specific target binding 

clearance followed by internalization of drug-target complex [29]. The binding of the drug to the 

target can occur predominantly in the central or the peripheral compartment [30]. The full TMDD 

model is however complex and generally overparameterised. As a result, several approximations 

of TMDD model have been proposed: quasi equilibrium (QE), quasi steady state (QSS) and 

Michaelis-Menten (MM) [31-33]. The QE approximation is based on the assumption that the 

drug-target binding is much faster than all other system processes. The QSS approximation 

assumes the drug-target complex concentration changes more slowly than the binding and 

internalization process. The MM approximation describes the system when the target 

concentration is small relative to the free drug concentration and the dosing regimens result in the 

target being fully saturated [32]. Recently, a new derivation of MM approximation of TMDD 

model, the irreversible binding MM (IB-MM) model, can be used when the dissociation rate 

constant is negligible [33]. This is the model we used previously in healthy subjects. In this 
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model, the MM parameters (Vmax, Km) are related to TMDD model parameters: Vmax=ksyn.VR and 

Km=KIB=kdeg/kon, where VR is the volume of distribution of target and KIB, ksyn, kdeg are the 

irreversible binding constant, target production rate and target degradation rate, respectively [6]. 

In the present study, the same structural model was applied successfully in patients, suggesting 

the similarity in binding kinetics of aflibercept to VEGF in cancer patients and healthy subjects: 

irreversible binding occurring dominantly in the peripheral compartment (extravascular space). 

This is in agreement with large quantities of VEGF in tumors and skeletal muscle [34]. 

Compared to healthy subjects, the population estimates for the clearance of free aflibercept in 

typical 70 kg male cancer patients were the same (0.88 L/hr) while the clearance of bound 

aflibercept was slightly faster (0.14 vs 0.19 L/day). Similar values of Vp and Vb (around 4 L) were 

also observed, indicating a low level of tissue diffusion of aflibercept in both healthy subjects and 

patients. In this analysis, the volume of distribution Vb was correctly estimated with similar value 

to Vp while it had to be fixed to the value of Vp in the analysis of healthy subjects due to 

identifiability issues. The MM parameters (Vmax and Km), reflecting the binding of aflibercept to 

VEGF, were however lower in cancer patients than in healthy subjects (0.82 mg/day and 1.92 

µg/mL vs 0.99 mg/day and 2.91 µg/mL, respectively). These findings were not expected. Km 

should be similar for these two populations and Vmax should be higher in cancer patients because 

of the faster secretion rate of VEGF and larger volume of distribution of VEGF in tumor tissue 

than in healthy tissue [35]. The comparison of binding kinetics between healthy subjects and 

patients is somewhat difficult because the designs and the studied doses were quite different in 

these two populations. The binding parameter estimates obtained in the previous study for 

healthy subjects may be impacted by the lower doses (e.g 1 mg/kg) given as single 

administration, and non available data of bound aflibercept at late time points compared to those 

measured in patients. It may also explain slightly faster clearance estimation for bound 

aflibercept. However, PK findings in healthy volunteers addressed many aspects of general 

clinical pharmacology and helped us to well identify the model structure thanks to homogenous 

data before moving to heterogeneous data pooled from different clinical studies, containing a lot 

of sparse data.  

The covariate screening was performed using the modeling approach rather than using the 

Empirical Bayes Estimates of individual parameters because of the large shrinkage of parameters 
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in the base model. A backward stepwise elimination procedure was used to build the final model 

using the Wald test. Among all covariates tested, gender had the largest effects on both CLf and 

Vp while gemcitabine had the largest effect on Km. Body weight also had important effect on CLf 

and Vp. The impact of the correlation between body weight and gender was found to be less 

significant due to the large varibilities in body weight observed in men and women. Moreover, 

the inclusion of both gender and body weight improved the model fit.  

Patients with low serum albumin concentrations or high concentrations of alkaline phosphatase had 

approximately 14% faster CLf and 32% lower exposure to free aflibercept compared to a typical 

patient with normal ALB or ALK. These effects were also found for total bevacizumab [36]. Low 

albumin and high alkaline phosphatase are generally indicative of disease severity and tumor 

burden [36] and may be the underlying cause of this association. In addition, an effect of albumin 

on clearance has been shown in the PK analysis of the monoclonal antibody, infliximab in 

patients with ulcerative colitis [37].  

A finding of note in this study is the important increase (82%) of the irreversible binding constant 

(Km or KIB) found in pancreatic cancer patients treated with gemcitabine in the VANILLA study. 

However, it may be not be reasonable to assume that the affinity of aflibercept for VEFG varies 

from one cancer to another, and this increase may in fact reflect differences in Vmax. Indeed, in the 

first steps of modeling, variability was included in the model for both Vmax and Km, but the former 

was removed because the model was not stable enough and the variability was very small and 

poorly estimated. However, since the correlation between Vmax and Km was very high (0.9), the 

apparent elevated value of Km may indicate a decrease in maximal binding capacity (Vmax) or in 

production rate of VEGF (ksyn). This would be related to the poorly vascularised nature of 

pancreatic tumors [38]. Unlike many other solid tumor types where the formation of new blood 

vessels (angiogenesis) promotes tumor growth by ensuring proper blood supply to the tumor, 

delivering nutrients and oxygen; pancreatic tumors do not need to create new blood vessels. They 

are able to survive with poor vasculature and under very low oxygen conditions, which makes 

drug delivery to pancreatic tumors especially difficult [39]. This has been suggested to be the 

reason why pancreatic cancer patients often have poor response to chemotherapy, even in 

combination with anti-VEGF agents administered intravenously [39,40].  
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Although several covariates were found significant in the final model, their contribution to 

aflibercept pharmacokinetics was mostly small with potential changes less than 20% (ranging 

from 3 to 18%) in CLf, CLb and Vp. As a result, the impact on VEGF inhibition would be minimal 

from a pharmacodynamic point of view. Conversely, the change in the maximal binding capacity 

of aflibercept to VEGF in patients with pancreatic cancer was much more important and may 

have contributed to the outcome of the VANILLA study in pancreatic cancer with the 4 mg/kg 

every 2 weeks regimen for aflibercept.  

The final PK model was used to simulate the concentration-time courses of free and VEGF-

bound aflibercept for 1000 virtual patients for different doses of aflibercept. Assuming the level 

of VEGF-bound aflibercept can be used as a marker of VEGF blockade [41], this simulation 

allowed us to confirm the choice of the recommended dose of 4 mg/kg every 2 weeks which is 

sufficient to saturate circulating VEGF in most patients. The developed model can be used to 

simulate and predict the concentration-time profiles of free and bound aflibercept in a patient 

population of interest, for example obese patients and patients with low albumin, with new 

dosing regimens. From a clinical perspective, it would be interesting to model the relationship 

between concentrations and a direct marker of aflibercept efficacy, such as the tumor sizes.   

In summary, the present model adequately described the pharmacokinetics of free and bound 

aflibercept in cancer patients. The most important covariates affecting aflibercept kinetics were 

gender, body weight, ALB, ALK and pancreatic cancer. This model supported the rationale for 

the recommended dose of 4 mg/kg every 2 weeks for aflibercept in colorectal cancer.  
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Tables 

Table 1. Summary of clinical trials of aflibercept included in the analysis 

 

Study 
Aflibercept  
dose (mg/kg) 

Dosing  
frequency 

Concomitant  
chemotherapy 

Sampling scheme  
frequency 

Number  
of patients 
with PK data 

Phase I           

TED6115/6116: dose-
escalation, solid tumors 

2, 3, 4, 5, 7  q2wk single agent 
full profilea 

(n=12-15) 
37 

TCD6118: dose-escalation,  
combination, solid tumors 

2, 4, 5, 6 q2wk 
irinotecan/5-FU 
/LV 

full profileb 

(n=19) 
61 

TCD6120: dose-escalation, 
combination,solid tumors 

2, 4, 5, 6, 7, 9  q3wk docetaxel 
full profilec 

(n=12) 
53 

Phase II      

ARD6122: dose-
escalation, ovarian cancer 

2, 4  q2wk single agent 
peak (Cycle 1) &  
multiple troughs 

175 

ARD6123: NSCLC 4 q2wk single agent 
peak (Cycle 1) & 
multiple troughs 

77 

EFC6125: ovarian cancer  
with ascites 

4 q2wk single agent 
peak (Cycle 1) & 
multiple troughs 

30 

Phase III      

VANILLA: combination, 
pancreatic cancer 

4 q2wk gemcitabine 
peak (Cycle 1) & 
multiple troughs 

204 

VITAL: combination, 
NSCLC 

6 q3wk docetaxel 
peak (Cycle 1) &  
multiple troughs 

370 

VELOUR: combination, 
colorectal cancer 

4 q2wk FOLFIRI 
peak (Cycle 1) & 
multiple troughs 

500 

n: number of sampling times per patient, NSCLC: non small cell lung carcinoma, LV: leucovorin, 5-FU: 5-fluorouracil 
q2wk/q3wk: every two/three weeks, FOLFIRI: combination of irinotecan.5-FU/LV with different doses to that in 
TCD6118 
 
a For study TED6115, samples were taken at pre-dose and at 1, 2, 4, 8, 24, 30, 48, 96, 168 hours post-dose of the first 
administration; pre-dose, post-dose and 7 days post-dose of the second administration. For study TED6116, an extension of 
TED6115, samples were taken prior to and at the end of each cycle in all cohorts and then at the end of the study and 3 
months after the last dose. 
 
bThis study was in 2 parts, part 1 open-label, multicenter, dose-escalation design and part 2 started double-blind, 
multicenter, randomized, parallel group, placebo controlled design. For part 1, samples were taken 5 minutes prior to 
dosing and at 1, 2, 4, 8, 24, 30, and 48 hours, and 7 days after dosing on Day 1 of Cycles 1 and 2. For all subsequent 
cycles, samples were collected 5 minutes prior to dosing, and at the end of aflibercept treatment. For part 2, samples were 
taken 5 minutes prior to dosing for all cycles, and at the end of aflibercept treatment, a final sample was collected. 

cDuring Cycle 1, samples were taken before administration of aflibercept, and at 1, 2, 4, 8, 24 (Day 2), and 48 hours (Day 
3) and 7 (Day 8) and 14 (Day 15) days, after the start of aflibercept infusion. For all subsequent cycles, samples were 
collected only before the administration of aflibercept. 
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Table 2. Characteristics of the patient study population at the entrance of the trial 

  
Number of 

 patients (%) Mean ± SD Median (5-95%) 
Patient demographics    
Age (years)  59.3 ± 10.3 60.0 (41.0-75.0) 
Weight (kg)  71.8 ± 16.1 70.0 (49.0-99.1) 

< 50 kg 88 (5.8)   
50-100 kg 1344 (89.2)   
>=100 kg 74 (4.9)   

Sex    
Male 767 (50.9)   
Female 739 (49.1)   

Ethnicity    
Caucasian 1377 (91.4)   
Black 27 (1.8)   
Asian 75 (5.0)   
Other 27 (1.8)   

Laboratory measurements       
Albumin (ALB)*   0.79 ± 0.22 0.80 (0.57-0.97) 
Alkaline phosphatase (ALK)*  1.18 ± 0.94 0.86 (0.42- 3.32) 
Alanine amino transferase (ALT)*  0.70 ± 0.53 0.55 (0.22-1.65) 
Aspartate amino transferase (AST)*  0.88 ± 0.62 0.72 (0.33-2.06) 
Bilirubin (BIL)*   0.51 ± 0.26 0.46 (0.20-1.00) 
Total protein (TP)*  0.88 ± 0.10 0.88 (0.74-1.03) 
Creatitine clearance (CLCR) (mL/min)   89.9 ± 31.5 84.2 (47.9-148) 
Cancer type    

Colorectal 499 (33.1)   
Non-small cell lung 447 (29.7)   
Pancreatic 204 (13.5)   
Ovarian 205 (13.6)   
Other solid tumors 151 (10.0)   

Cancer treatment    
monotherapy 319 (21.2)   
combined chemotherapy 1187 (78.8)   

docetaxel  423 (28.1)   
irinotecan/5-FU /LV 61 (4.1)   
gemcitabine 204 (13.5)   
FOLFIRI 499 (33.1)   

Dose regimen       
4 mg/kg q2wk 939 (62.3)   
6 mg/kg q3wk 399 (26.5)   
other multiple doses 168 (11.1)     

Pharmacokinetic sampling       
Intensive 151 (10.0)   
Peak and trough 1355 (90.0)     

           *The measurements were normalized to the upper normal limit value of each laboratory 
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Table 3. Parameter estimates of the base and final model 

     

  Base model Final model 

Parameter Estimate (RSE %) IIV (RSE%) Estimate (RSE %) IIV (RSE %) 

CLf (L/day) 0.85 (2) 35.2 (3) 0.88 (2) 30.9 (3) 

βCLf, female - - -0.15 (16) - 

βCLf, weight - - 0.33 (19) - 

βCLf, CLCR - - 0.18 (20) - 

βCLf, ALB  - - -0.39 (14) - 

βCLf, ALK  - - 0.10 (18) - 

βCLf, ALT  - - -0.06 (30) - 

βCLf, gemcitabine - - 0.09 (37) - 

Vp (L) 3.87 (1) 26.8 (5) 4.35 (2) 22.4 (6) 

βVp, female - - -0.21 (12) - 

βVp, weight - - 0.39 (16) - 

βVp, CLCR - - 0.10 (39) - 
Q (L/day) 1.68 (8) 81.9 (9) 1.49 (9) 85.5 (9) 

Vt (L) 3.75 (5) 64.2 (4) 3.72 (5) 65.8 (4) 

Vb (L) 3.92 (10) 29.1 (5) 4.14 (10) 27.5 (6) 

Vmax (mg/day) 0.77 (10) - 0.82 (10) - 

Km (µg/mL) 1.79 (7) 41.2 (22) 1.92 (9) 28.2 (42) 

βKm, female - - -0.23 (35) - 

βKm, ALT - - 0.26 (46) - 

βKm,AST - - -0.26 (37) - 

βKm, gemcitabine - - 0.60 (17) - 
CLb (L/day) 0.18 (10) 23.5 (3) 0.19 (10) 22.3 (3) 

βCLb,age - - 0.18 (26) - 

βCLb,CLCR - - 0.09 (31) - 

βCLf, ALB  - - -0.13 (33) - 

βCLf,ALT  - - -0.08 (27) - 

                       βCLf, irinotecan/5-FU/LV - - -0.13 (26) - 

βCLf, docetaxel - - 0.06 (30) - 

           σfa  (µg/mL) 0.04 (6) - 0.04 (6) - 

           σfp (%) 32.90 (1) - 32.80 (1) - 

           σba (µg.eq/mL) 0.34 (2) - 0.34 (2) - 

           σbp (%) 9.01 (4) - 9.04 (4) - 
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Table 4. Assessment of covariate effects on aflibercept pharmacokinetic parameters  

 

Covariate Quantiles CL f  
(L/day) 

% 
Change���� 

Vp  
(L) 

% 
Change���� 

K m  
(µg/mL) 

% 
Change���� 

CL b  
(L/day) 

% 
Change���� 

Typical 
patient* 

 0.88  4.35  1.92  0.19  

Sex Female 0.76 -14.1 3.53 -18.9 1.53 -20.2 -  
WT 5%: 49 0.79 -11.0 3.78 -13.1 -  -  

 95%: 99.1 1.00 12.0 4.99 14.6     
Age 5%: 41 -  -  -  0.18 -6.6 

 95%: 75       0.20 4.1 
CLCR 5%: 47.9 0.80 -9.3 4.13 -5.1 -  0.18 -4.6 

 95%: 148.1 0.98 11.2 4.60 5.9   0.20 5.2 
ALB 5%: 0.57 1.00 14.1 -  -  0.20 4.6 

 95%: 0.965 0.82 -7.0     0.19 -2.5 
ALK  5%: 0.423 0.82 -7.0 -  -  -  

 95%: 3.233 1.01 14.4       
ALT 5%: 0.222 0.93 5.8 -  1.52 -20.6 0.20 7.6 

 95%: 1.646 0.82 -6.6   2.54 32.5 0.17 -8.5 
AST 5%: 0.333 -  -  2.35 22.3 -  

 95%: 2.058     1.46 -24.0   
Combination gemcitabine 0.96 9.2 -  3.49 82.0 -  

 
irinotecan/ 
5-FU/LV -  -  -  0.17 -12.5 

 docetaxel -  -  -  0.20 6.5 

*: male, 60 years, 70 kg, normalized ALB of 0.80, normalized ALK of 0.86, normalized ALT of 0.55, normalized 
AST of 0.72, CLCR of 82.2 mL/min, receiving aflibercept as a monotherapy 

������������ theoretical effect (% change with respect to the typical value) of the covariate considered alone, the other covariate 
being set to its median value 

% changes in PK parameters greater than 20% are presented in bold 
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Figure legends 

Figure 1 

Proposed structural model for free and bound aflibercept. Free aflibercept in plasma distributes 

first to tissues then binds to VEGF to form a complex. Binding to VEGF occurs in the peripheral 

compartment, follows the law of mass action and can be characterised by a nonlinear equation 

with MM constants (Vmax, Km). Bound aflibercept (complex) is assumed to be directly eliminated 

through internalisation (kint). 

 

Figure 2  

Goodness-of-fit plots: (top) observed versus predicted concentrations for free aflibercept; 

(bottom) observed versus predicted concentrations for bound aflibercept. The plots on the left 

present observed versus the population predicted concentration (PRED) while the plots on the 

right present observed versus individual predicted concentrations (IPRED). One outlier was 

removed from the plots. 

 

Figure 3  

Normalised prediction distribution error (NPDE) vs time since last dose (TimeL) for free 

aflibercept (top) and bound aflibercept (bottom) with 95% prediction intervals around the the 

10th, 50th ,90th percentiles. NPDE plots for TimeL ≤ 22 weeks are presented in the left and for 

TimeL ≤ 6 weeks in the right. Observed data are plotted using a circle (◦). The solid line 

represents the 10th, 50th and 90th percentiles of the npde corresponding to observed data. The 

shaded area represents 95% prediction intervals for the selected percentiles (pink for 50th 

percentiles and blue for others). 

 

Figure 4 

Examples of individual fits of free and bound aflibercept for 4 subjects in different studies. From 

left to right: study TED6115 (phase I), study ARD6123 (phase II), study Vital (phase III), and 

study VELOUR (phase III). Fits for free aflibercept are presented in the top, bound afibercept in 

the bottom. Observed data are plotted using a circle (◦). The line (−) represents the prediction of 

model. 
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Figure 5 

Predicted median profiles of bound aflibercept at steady-state with different dosing regimens (2, 

4, 6 mg/kg q2wk or q3wk) illustrated by vertical lines to x-axis (blue for q2wk and grey for q3wk 

dosing regimen). 

 

Figure 6 

Predicted steady-state concentrations of free aflibercept (left y-axis) and bound aflibercept (right 

y-axis) following 8 aflibercept doses of 4mg/kg q2wk during 24 weeks. 
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
0

1
2

3
4

Time (weeks)

P
re

d
ic

te
d

 b
o

un
d 

a
fli

be
rc

e
pt

 c
o

nc
 (µ

g.
eq

/m
L)

0 2 4 6 8 10 12 14 16 18 20 22 24

6mg/kg q2wk
4mg/kg q2wk
2mg/kg q2wk
6mg/kg q3wk
4mg/kg q3wk
2mg/kg q3wk



 32

Figure 6.  
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