A. Jemal, F. Bray, M. Center, J. Ferlay, E. Ward et al., Global cancer statistics, Global cancer statistics, pp.69-90, 2011.
DOI : 10.3322/caac.20107

E. Claus, N. Risch, and W. Thompson, Genetic analysis of breast cancer in the cancer and steroid hormone study, Am J Hum Genet, vol.48, pp.232-242, 1991.

Y. Miki, J. Swensen, D. Shattuck-eidens, P. Futreal, K. Harshman et al., A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1, Science, vol.266, issue.5182, pp.66-71, 1994.
DOI : 10.1126/science.7545954

R. Wooster, G. Bignell, J. Lancaster, S. Swift, S. Seal et al., Identification of the breast cancer susceptibility gene BRCA2, Nature, vol.72, issue.6559, pp.789-792, 1995.
DOI : 10.1038/378789a0

P. Pharoah, A. Antoniou, D. Easton, and B. Ponder, Polygenes, Risk Prediction, and Targeted Prevention of Breast Cancer, New England Journal of Medicine, vol.358, issue.26, pp.2796-2803, 2008.
DOI : 10.1056/NEJMsa0708739

T. Walsh and M. King, Ten Genes for Inherited Breast Cancer, Cancer Cell, vol.11, issue.2, pp.103-105, 2007.
DOI : 10.1016/j.ccr.2007.01.010

S. Seal, D. Thompson, A. Renwick, A. Elliott, P. Kelly et al., Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles, Nature Genetics, vol.42, issue.11, pp.1239-1241, 2006.
DOI : 10.1038/ng1902

N. Rahman, S. Seal, D. Thompson, P. Kelly, A. Renwick et al., MR: PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene, Breast Cancer Susceptibility Collaboration (UK) Nat Genet, vol.39, pp.165-167, 2007.

W. Foulkes, Inherited Susceptibility to Common Cancers, New England Journal of Medicine, vol.359, issue.20, pp.2143-2153, 2008.
DOI : 10.1056/NEJMra0802968

N. Howlett, T. Taniguchi, S. Olson, B. Cox, Q. Waisfisz et al., Biallelic Inactivation of BRCA2 in Fanconi Anemia, Science, vol.297, issue.5581, pp.606-609, 2002.
DOI : 10.1126/science.1073834

M. Levitus, Q. Waisfisz, B. Godthelp, Y. De-vries, S. Hussain et al., The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J, Nature Genetics, vol.37, issue.9, pp.934-935, 2005.
DOI : 10.1126/science.1088753

S. Reid, D. Schindler, H. Hanenberg, K. Barker, S. Hanks et al., Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer, Nature Genetics, vol.12, issue.2, pp.162-164, 2007.
DOI : 10.1038/ng1947

N. Suwaki, K. Klare, and M. Tarsounas, RAD51 paralogs: Roles in DNA damage signalling, recombinational repair and tumorigenesis, Seminars in Cell & Developmental Biology, vol.22, issue.8, pp.898-905, 2011.
DOI : 10.1016/j.semcdb.2011.07.019

F. Vaz, H. Hanenberg, B. Schuster, K. Barker, C. Wiek et al., Mutation of the RAD51C gene in a Fanconi anemia???like disorder, Nature Genetics, vol.176, issue.5, pp.406-409, 2010.
DOI : 10.1002/(SICI)1096-987X(19980415)19:5<535::AID-JCC6>3.0.CO;2-N

H. Shamseldin, M. Elfaki, and F. Alkuraya, Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation: Figure 1, Journal of Medical Genetics, vol.49, issue.3, pp.184-186, 2012.
DOI : 10.1136/jmedgenet-2011-100585

A. Meindl, H. Hellebrand, C. Wiek, V. Erven, B. Wappenschmidt et al., Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene, Nature Genetics, vol.668, issue.5, pp.410-414, 2010.
DOI : 10.1016/S0301-472X(02)00782-8

C. Loveday, C. Turnbull, E. Ramsay, D. Hughes, E. Ruark et al., Germline mutations in RAD51D confer susceptibility to ovarian cancer, Nature Genetics, vol.52, issue.9, pp.879-882, 2011.
DOI : 10.1002/gepi.1014

D. Park, F. Lesueur, T. Nguyen-dumont, M. Pertesi, F. Odefrey et al., Rare Mutations in XRCC2 Increase the Risk of Breast Cancer, The American Journal of Human Genetics, vol.90, issue.4, pp.734-739, 2012.
DOI : 10.1016/j.ajhg.2012.02.027

F. Hilbers, J. Wijnen, N. Hoogerbrugge, J. Oosterwijk, M. Collee et al., Rare variants in XRCC2 as breast cancer susceptibility alleles: Table??1, Journal of Medical Genetics, vol.49, issue.10, pp.618-620, 2012.
DOI : 10.1136/jmedgenet-2012-101191

J. Johnson, S. Healey, K. Khanna, and G. Chenevix-trench, Mutation analysis of RAD51L1 (RAD51B/REC2) in multiple-case, non-BRCA1/2 breast cancer families, Breast Cancer Research and Treatment, vol.21, issue.2, pp.255-263, 2011.
DOI : 10.1007/s10549-011-1539-6

V. Caux-moncoutier, L. Castéra, C. Tirapo, D. Michaux, M. Rémon et al., EMMA, a cost- and time-effective diagnostic method for simultaneous detection of point mutations and large-scale genomic rearrangements: application to BRCA1 and BRCA2 in 1,525 patients, Human Mutation, vol.42, issue.Suppl 2, pp.325-334, 2011.
DOI : 10.1002/humu.21414

URL : https://hal.archives-ouvertes.fr/hal-00613913

S. Tavtigian, A. Deffenbaugh, L. Yin, T. Judkins, T. Scholl et al., Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral, Journal of Medical Genetics, vol.43, issue.4, pp.295-305, 2006.
DOI : 10.1136/jmg.2005.033878

P. Kumar, S. Henikoff, and P. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nature Protocols, vol.4, issue.8, pp.1073-1081, 2009.
DOI : 10.1101/gr.772403

I. Adzhubei, S. Schmidt, L. Peshkin, V. Ramensky, A. Gerasimova et al., A method and server for predicting damaging missense mutations, Nature Methods, vol.7, issue.4, pp.248-249, 2010.
DOI : 10.1038/nmeth0410-248

C. Houdayer, V. Caux-moncoutier, S. Krieger, M. Barrois, F. Bonnet et al., Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants, Human Mutation, vol.39, issue.8, pp.1228-1238, 2012.
DOI : 10.1002/humu.22101

S. Heim, M. Nilbert, R. Vanni, U. Floderus, N. Mandahl et al., A specific translocation, t(12;14)(q14???15; q23???24), characterizes a subgroup of uterine leiomyomas, Cancer Genetics and Cytogenetics, vol.32, issue.1, pp.13-17, 1988.
DOI : 10.1016/0165-4608(88)90305-6

E. Schoenmakers, C. Huysmans, and W. Van-de-ven, Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas, Cancer Res, vol.59, pp.19-23, 1999.

O. Date, M. Katsura, M. Ishida, T. Yoshihara, A. Kinomura et al., Haploinsufficiency of RAD51B Causes Centrosome Fragmentation and Aneuploidy in Human Cells, Cancer Research, vol.66, issue.12, pp.6018-6024, 2006.
DOI : 10.1158/0008-5472.CAN-05-2803

G. Thomas, K. Jacobs, P. Kraft, M. Yeager, S. Wacholder et al., Amultistagegenome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24, Nat Genet, vol.1, issue.41, pp.579-584, 2009.

N. Orr, A. Lemnrau, R. Cooke, O. Fletcher, K. Tomczyk et al., Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk, Nature Genetics, vol.44, issue.11, pp.1182-1184, 2012.
DOI : 10.1371/journal.pgen.1000054

T. Zucchero, M. Cooper, B. Maher, S. Daack-hirsch, B. Nepomuceno et al., ) Gene Variants and the Risk of Isolated Cleft Lip or Palate, New England Journal of Medicine, vol.351, issue.8, pp.769-780, 2004.
DOI : 10.1056/NEJMoa032909

S. Dickson, K. Wang, I. Krantz, H. Hakonarson, and D. Goldstein, Rare Variants Create Synthetic Genome-Wide Associations, PLoS Biology, vol.81, issue.1, 2010.
DOI : 10.1371/journal.pbio.1000294.t001

X. He, W. Wei, J. Su, Z. Yang, Y. Liu et al., Association between the XRCC3 polymorphisms and breast cancer risk: meta-analysis based on case???control studies, Molecular Biology Reports, vol.315, issue.2, pp.5125-5134, 2012.
DOI : 10.1007/s11033-011-1308-y

E. Thompson, S. Boyle, J. Johnson, G. Ryland, S. Sawyer et al., Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients, Human Mutation, vol.124, issue.1, pp.95-99, 2012.
DOI : 10.1002/humu.21625

A. Romero, P. Pérez-segura, A. Tosar, J. García-saenz, E. Díaz-rubio et al., A HRM-based screening method detects RAD51C germ-line deleterious mutations in Spanish breast and ovarian cancer families, Breast Cancer Research and Treatment, vol.8, issue.3, pp.939-946, 2011.
DOI : 10.1007/s10549-011-1543-x

C. Loveday, C. Turnbull, E. Ruark, R. Xicola, E. Ramsay et al., Germline RAD51C mutations confer susceptibility to ovarian cancer, Eccles, pp.475-476, 2012.
DOI : 10.1038/ng.2224

. Golmard, Germline mutation in the RAD51B gene confers predisposition to breast cancer, BMC Cancer, vol.44, issue.1, p.484, 2013.
DOI : 10.1038/ng.2224

URL : https://hal.archives-ouvertes.fr/inserm-00878230