Improving abdomen tumor low-dose CT images using dictionary learning based patch processing and unsharp filtering.

Abstract : Reducing patient radiation dose, while maintaining a high-quality image, is a major challenge in Computed Tomography (CT). The purpose of this work is to improve abdomen tumor low-dose CT (LDCT) image quality by using a two-step strategy: a first patch-wise non linear processing is first applied to suppress the noise and artifacts, that is based on a sparsity prior in term of a learned dictionary, then an unsharp filtering aiming to enhance the contrast of tissues and compensate the contrast loss caused by the DL processing. Preliminary results show that the proposed method is effective in suppressing mottled noise as well as improving tumor detectability.
Type de document :
Article dans une revue
Conference proceedings : .. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, Institute of Electrical and Electronics Engineers (IEEE), 2013, 2013, pp.4014-7. 〈10.1109/EMBC.2013.6610425〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00874954
Contributeur : Christine Toumoulin <>
Soumis le : samedi 19 octobre 2013 - 19:20:16
Dernière modification le : mercredi 16 mai 2018 - 11:23:41
Document(s) archivé(s) le : lundi 20 janvier 2014 - 04:25:41

Fichiers

EMBC2013_low_CT.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Chen Yang, Fei Yu, Limin Luo, Christine Toumoulin. Improving abdomen tumor low-dose CT images using dictionary learning based patch processing and unsharp filtering.. Conference proceedings : .. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, Institute of Electrical and Electronics Engineers (IEEE), 2013, 2013, pp.4014-7. 〈10.1109/EMBC.2013.6610425〉. 〈inserm-00874954〉

Partager

Métriques

Consultations de la notice

229

Téléchargements de fichiers

469