Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing.

Abstract : In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.
Type de document :
Article dans une revue
Physics in Medicine and Biology, IOP Publishing, 2013, 58 (16), pp.5803-20. 〈10.1088/0031-9155/58/16/5803〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00874944
Contributeur : Christine Toumoulin <>
Soumis le : mardi 12 août 2014 - 16:49:38
Dernière modification le : mercredi 16 mai 2018 - 11:23:41
Document(s) archivé(s) le : lundi 17 novembre 2014 - 15:58:41

Fichier

paper_pmbR2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Yang Chen, Xindao Yin, Luyao Shi, Huazhong Shu, Limin Luo, et al.. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing.. Physics in Medicine and Biology, IOP Publishing, 2013, 58 (16), pp.5803-20. 〈10.1088/0031-9155/58/16/5803〉. 〈inserm-00874944〉

Partager

Métriques

Consultations de la notice

601

Téléchargements de fichiers

655