B. Heras, S. R. Shouldice, M. Totsika, M. J. Scanlon, M. A. Schembri et al., DSB proteins and bacterial pathogenicity, Nature Reviews Microbiology, vol.23, issue.3, pp.215-225, 2009.
DOI : 10.1038/nrmicro2087

J. C. Bardwell, K. Mcgovern, and J. Beckwith, Identification of a protein required for disulfide bond formation in vivo, Cell, vol.67, issue.3, pp.581-589, 1991.
DOI : 10.1016/0092-8674(91)90532-4

C. R. Tinsley, R. Voulhoux, J. L. Beretti, J. Tommassen, and X. Nassif, Three Homologues, Including Two Membrane-bound Proteins, of the Disulfide Oxidoreductase DsbA in Neisseria meningitidis: EFFECTS ON BACTERIAL GROWTH AND BIOGENESIS OF FUNCTIONAL TYPE IV PILI, Journal of Biological Chemistry, vol.279, issue.26, pp.27078-27087, 2004.
DOI : 10.1074/jbc.M313404200

S. Sinha, O. H. Ambur, P. R. Langford, T. Tønjum, and J. S. Kroll, Reduced DNA binding and uptake in the absence of DsbA1 and DsbA2 of Neisseria meningitidis due to inefficient folding of the outer-membrane secretin PilQ, Microbiology, vol.154, issue.1, pp.217-225, 2008.
DOI : 10.1099/mic.0.2007/010496-0

J. L. Martin, J. C. Bardwell, and J. Kuriyan, Crystal structure of the DsbA protein required for disulphide bond formation in vivo, Nature, vol.365, issue.6445, pp.464-468, 1993.
DOI : 10.1038/365464a0

E. Ondo-mbele, C. Vivès, A. Koné, and L. Serre, Intriguing Conformation Changes Associated with the Trans/Cis Isomerization of a Prolyl Residue in the Active Site of the DsbA C33A Mutant, Journal of Molecular Biology, vol.347, issue.3, pp.555-563, 2005.
DOI : 10.1016/j.jmb.2005.01.049

S. Sinha, P. R. Langford, and J. S. Kroll, Functional diversity of three different DsbA proteins from Neisseria meningitidis, Microbiology, vol.150, issue.9, pp.2993-3000, 2004.
DOI : 10.1099/mic.0.27216-0

W. L. Delano, The PyMOL Molecular Graphics System, DeLano Scientific, 2002.

J. L. Martin, Thioredoxin ???a fold for all reasons, Structure, vol.3, issue.3, pp.245-250, 1995.
DOI : 10.1016/S0969-2126(01)00154-X

K. Inaba, Y. Takahashi, K. Ito, and S. Hayashi, Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB, Proc. Natl Acad. Sci. USA, pp.287-292, 2006.
DOI : 10.1073/pnas.0507570103

K. Inaba, S. Murakami, M. Suzuki, A. Nakagawa, E. Yamashita et al., Crystal Structure of the DsbB-DsbA Complex Reveals a Mechanism of Disulfide Bond Generation, Cell, vol.127, issue.4, pp.789-801, 2006.
DOI : 10.1016/j.cell.2006.10.034

M. Huber-wunderlich and R. Glockshuber, A single dipeptide sequence modulates the redox properties of a whole enzyme family. Folding Des, pp.161-171, 1998.

U. Grauschopf, J. R. Winther, P. Korber, T. Zander, P. Dallinger et al., Why is DsbA such an oxidizing disulfide catalyst? Cell, pp.947-955, 1995.
DOI : 10.1016/0092-8674(95)90210-4

URL : http://doi.org/10.1016/0092-8674(95)90210-4

L. W. Guddat, J. C. Bardwell, and J. L. Martin, Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization, Structure, vol.6, issue.6, pp.757-767, 1998.
DOI : 10.1016/S0969-2126(98)00077-X

B. Heras, M. Kurz, R. Jarrott, S. R. Shouldice, P. Frei et al., Staphylococcus aureus DsbA Does Not Have a Destabilizing Disulfide: A NEW PARADIGM FOR BACTERIAL OXIDATIVE FOLDING, Journal of Biological Chemistry, vol.283, issue.7, pp.4261-4271, 2008.
DOI : 10.1074/jbc.M707838200

H. Kadokura, H. Tian, T. Zander, J. C. Bardwell, and J. Beckwith, Snapshots of DsbA in Action: Detection of Proteins in the Process of Oxidative Folding, Science, vol.303, issue.5657, pp.534-537, 2004.
DOI : 10.1126/science.1091724

J. Qin, G. M. Clore, W. P. Kennedy, J. Kuszewski, and A. M. Gronenborn, The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal, Structure, vol.4, issue.5, pp.613-620, 1996.
DOI : 10.1016/S0969-2126(96)00065-2

J. B. Charbonnier, P. Belin, M. Moutiez, E. A. Stura, and E. Quemeneur, On the role of the cis-proline residue in the active site of DsbA, Protein Science, vol.32, issue.1, pp.96-105, 1999.
DOI : 10.1110/ps.8.1.96

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proc. Natl Acad. Sci. USA, 98, pp.10037-10041, 2001.
DOI : 10.1073/pnas.181342398

J. P. Vivian, J. Scoullar, A. L. Robertson, S. P. Bottomley, J. Horne et al., Structural and Biochemical Characterization of the Oxidoreductase NmDsbA3 from Neisseria meningitidis, Journal of Biological Chemistry, vol.283, issue.47, pp.32452-32461, 2008.
DOI : 10.1074/jbc.M803990200

J. Messens and J. F. Collet, Pathways of disulfide bond formation in Escherichia coli, The International Journal of Biochemistry & Cell Biology, vol.38, issue.7, pp.1050-1062, 2006.
DOI : 10.1016/j.biocel.2005.12.011

B. R. Roberts, Z. A. Wood, T. J. Jönsson, L. B. Poole, and P. A. Karplus, AhpF, Protein Science, vol.300, issue.9, pp.2414-2420, 2005.
DOI : 10.1110/ps.051459705

H. Sugeta, Normal vibrations and molecular conformations of dialkyl disulfides, Spectrochimica Acta Part A: Molecular Spectroscopy, vol.31, issue.11, pp.1729-1737, 1975.
DOI : 10.1016/0584-8539(75)80116-4

G. Roos, A. Garcia-pino, K. Van-belle, E. Brosens, K. Wahni et al., The Conserved Active Site Proline Determines the Reducing Power of Staphylococcus aureus Thioredoxin, Journal of Molecular Biology, vol.368, issue.3, pp.800-811, 2007.
DOI : 10.1016/j.jmb.2007.02.045

J. W. Nelson and T. E. Creighton, Reactivity and Ionization of the Active Site Cysteine Residues of DsbA, a Protein Required for Disulfide Bond Formation in vivo, Biochemistry, vol.33, issue.19, pp.5974-5983, 1994.
DOI : 10.1021/bi00185a039

M. W. Pantoliano, E. C. Petrella, J. D. Kwasnoski, V. S. Lobanov, J. Myslik et al., High-Density Miniaturized Thermal Shift Assays as a General Strategy for Drug Discovery, Journal of Biomolecular Screening, vol.6, issue.6, pp.429-440, 2001.
DOI : 10.1177/108705710100600609

U. B. Ericsson, B. M. Hallberg, G. T. Detitta, N. Dekker, and P. Nordlund, Thermofluor-based high-throughput stability optimization of proteins for structural studies, Analytical Biochemistry, vol.357, issue.2, pp.289-298, 2006.
DOI : 10.1016/j.ab.2006.07.027

M. Moutiez, T. V. Burova, T. Haertle, and E. Quemeneur, On the non-respect of the thermodynamic cycle by DsbA variants, Protein Science, vol.33, issue.1, pp.106-112, 1999.
DOI : 10.1110/ps.8.1.106

J. P. Grimshaw, C. U. Stirnimann, M. S. Brozzo, G. Malojcic, M. G. Grutter et al., DsbL and DsbI Form a Specific Dithiol Oxidase System for Periplasmic Arylsulfate Sulfotransferase in Uropathogenic Escherichia coli, Journal of Molecular Biology, vol.380, issue.4, pp.667-680, 2008.
DOI : 10.1016/j.jmb.2008.05.031

G. Ren, D. Stephan, Z. Xu, Y. Zheng, D. Tang et al., Properties of the Thioredoxin Fold Superfamily Are Modulated by a Single Amino Acid Residue, Journal of Biological Chemistry, vol.284, issue.15, pp.10150-10159, 2009.
DOI : 10.1074/jbc.M809509200

S. Hu, J. A. Peek, E. Rattigan, R. K. Taylor, and J. L. Martin, Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae, Journal of Molecular Biology, vol.268, issue.1, pp.137-146, 1997.
DOI : 10.1006/jmbi.1997.0940

E. Mössner, M. Huber-wunderlich, and R. Glockshuber, thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases, Protein Science, vol.34, issue.5, pp.1233-1244, 1998.
DOI : 10.1002/pro.5560070519

S. Quan, I. Schneider, J. Pan, V. Hacht, A. Bardwell et al., C Motif Is More than a Redox Rheostat, Journal of Biological Chemistry, vol.282, issue.39, pp.28823-28833, 2007.
DOI : 10.1074/jbc.M705291200

B. Miroux and J. E. Walker, Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels, Journal of Molecular Biology, vol.260, issue.3, pp.289-298, 1996.
DOI : 10.1006/jmbi.1996.0399

U. Jakob, W. Muse, M. Eser, and J. C. Bardwell, Chaperone Activity with a Redox Switch, Cell, vol.96, issue.3, pp.341-352, 1999.
DOI : 10.1016/S0092-8674(00)80547-4

T. Zander, N. D. Phadke, and J. C. Bardwell, [5] Disulfide bond catalysts in Escherichia coli, Methods Enzymol, vol.290, pp.59-74, 1998.
DOI : 10.1016/S0076-6879(98)90007-6

G. L. Ellman, Tissue sulfhydryl groups, Archives of Biochemistry and Biophysics, vol.82, issue.1, pp.70-77, 1959.
DOI : 10.1016/0003-9861(59)90090-6

J. Regeimbal and J. C. Bardwell, DsbB Catalyzes Disulfide Bond Formation de Novo, Journal of Biological Chemistry, vol.277, issue.36, pp.32706-32713, 2002.
DOI : 10.1074/jbc.M205433200

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, Journal of Applied Crystallography, vol.26, issue.6, pp.795-800, 1993.
DOI : 10.1107/S0021889893005588

T. C. Termilliger and J. Berendzen, Automated MAD and MIR structure solution, Acta Crystallographica Section D Biological Crystallography, vol.55, issue.4, pp.849-861, 1999.
DOI : 10.1107/S0907444999000839

R. Miller, S. M. Gallo, H. G. Khalak, and C. M. Weeks, SnB: crystal structure determination via shake-and-bake, Journal of Applied Crystallography, vol.27, issue.4, pp.613-621, 1994.
DOI : 10.1107/S0021889894000191

E. De-la-fortelle and G. Bricogne, [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods, Methods Enzymol, vol.276, pp.472-494, 1997.
DOI : 10.1016/S0076-6879(97)76073-7

A. Perrakis, R. Morris, and V. S. Lamzin, Automated protein model building combined with iterative structure refinement, Nature Structural Biology, vol.6, issue.5, pp.458-463, 1999.
DOI : 10.1038/8263

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255

A. Vagin and A. Teplyakov, An approach to multi-copy search in molecular replacement, Acta Crystallographica Section D Biological Crystallography, vol.56, issue.12, pp.1622-1624, 2000.
DOI : 10.1107/S0907444900013780

R. J. Read, Improved Fourier coefficients for maps using phases from partial structures with errors, Acta Crystallographica Section A Foundations of Crystallography, vol.42, issue.3, pp.140-149, 1986.
DOI : 10.1107/S0108767386099622

A. T. Brünger, P. D. Adams, G. M. Clore, W. L. Delano, P. Gros et al., Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.905-921, 1998.
DOI : 10.1107/S0907444998003254

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

P. Carpentier, A. Royant, J. Ohana, and D. Bourgeois, Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy, Journal of Applied Crystallography, vol.40, issue.6, pp.1113-1122, 2007.
DOI : 10.1107/S0021889807044202