Q. Cte-znua, Q. Eco-sita, and . Eco-znua, Q1RAS7_ECOUT; Efs-0055, Q839U5; Efs-0577, Q8KU66; Efs- 2076, Q832Z2; Efs-3206, Q82Z67; Hdu-YfeA, Q7VKQ6_HAEDU; Hdu-ZnuA, Q9RPX0; Hin-0362, Q57449; Hin-ZnuA, P44526; Lla-MtsA, Q9CFZ5; Lla-ZitS, Q9CDU6; Lmo-0153, Q8YAH3; Lmo-1671, Q8Y6L3; Lmo-1847, Q8Y653; Pae-2407, Q9I174_PSEAE; Pae-ZnuA, Q9HT75_PSEAE; Psy-1951, Q4ZV28_PSEU2; Psy-2368, Q4ZTW5_PSEU2; Psy-ZnuA, Q4ZZS4_PSEU2; Sag-1898, Q3JZ10

Q. Sep-sitc, Q. Sgo-adca, Y. Sgo-lmb, Y. Sgo-scaa, Y. Smu-adca et al., Q8CWN2; Spn-AdcAII, Q8DQ09; Spn-PsaA, P0A4G3; Spy-AdcA, Q9A0L9; Spy-MtsA, P0A4G4; Spy-Lbp, Q99XV3; Ssa- 1990, A3CQA6_STRSV; Ssa-AdcA, A3CK95_STRSV; Ssa-Lmb, A3CNI4_STRSV; Ssa-SsaB, A3CKL4_STRSV; Sth-AdcA, Q5M4Q6_STRT2; Sty-sitA, Q9XCS2_SALTI; Sty-ZnuA, Q8Z5W7_SALTI; Syn-MntC, Q79EF9_SYNY3; Syn-ZnuA, P73085_SYNY3; Tma-0123, Q9WXX7 For each protein the three first letters specify the bacterial species: Bce, Bacillus cereus Chlamydia pneumonia, 2081.

. Cpe, Clostridium perfringens; Cte, Clostridium tetani; Eco, Escherichia coli; Efs, Enterococcus faecalis

H. Hin, L. Lla, L. Lmo, P. Pae, and . Aeruginosa, Pseudomonas syringae; Sty, Salmonella typhi; Sau, Staphylococcus aureus Staphylococcus epidermidis; Sag, Streptococcus agalactiae; Sgo, Streptococcus gordonii; Smu, Streptococcus mutans; Spn, Streptococcus pneumoniae; Spy, Streptococcus pyogenes; Ssa, Streptococcus sanguini; Sth, Streptococcus thermophilus; Syn, Synechocystis; Tma, Thermotoga maritima; Tpa, Treponema pallidum; Vch, Vibrio cholerae; Ype, Yersinia pestis. The organisation in classic abc operon is indicated by (+). The nature of the metal ion bound is shown as well as the presence of a predicted long flexible loop at the entrance of the binding site. Poly His sequence located in the loop is indicated by (H). The three S. pneumoniae proteins are underlined. Proteins whose structure has been solved are marked in yellow. Gram-positive/negative bacterial classification is indicated. *Present work. See also Refs The biochemical basis of zinc physiology, Physiol. Rev, vol.1835, issue.73, pp.22-2931, 1993.

P. Zalewski, A. Truong-tran, D. Grosser, L. Jayaram, C. Murgia et al., Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets. A review, Pharmacology & Therapeutics, vol.105, issue.2, pp.127-149, 2005.
DOI : 10.1016/j.pharmthera.2004.09.004

V. Bunker, L. Hinks, M. Lawson, and B. Clayton, Assessment of zinc and copper status of healthy elderly people using metabolic balance studies and ? http://www.expasy.org/tools/blast/ measurement of leucocyte concentrations, Am. J. Clin, 1884.

P. Zalewski, A. Truong-tran, S. Lincoln, D. Ward, A. Shankar et al., Use of a zinc fluorophore to measure labile pools of zinc in body fluids and cell-conditioned media, BioTechniques, vol.40, issue.4, pp.509-520, 2006.
DOI : 10.2144/06404RR02

C. Moore and J. Helmann, Metal ion homeostasis in Bacillus subtilis, Current Opinion in Microbiology, vol.8, issue.2, pp.188-195, 2005.
DOI : 10.1016/j.mib.2005.02.007

G. Berducci, A. P. Mazzetti, G. Rotilio, and A. Battistoni, Periplasmic competition for zinc uptake between the metallochaperone ZnuA and Cu,Zn superoxide dismutase, FEBS Letters, vol.269, issue.1-3, pp.289-292, 2004.
DOI : 10.1016/j.febslet.2004.06.008

C. F. Higgins, ABC Transporters: From Microorganisms to Man, Annual Review of Cell Biology, vol.8, issue.1, pp.67-113, 1992.
DOI : 10.1146/annurev.cb.08.110192.000435

E. Gilson, G. Alloing, T. Schmidt, J. P. Claverys, R. Dudler et al., Evidence for high affinity binding-protein dependent transport systems in Gram positive bacteria and in Mycoplasma, EMBO J, vol.7, pp.3971-3974, 1988.

A. Dintilhac and J. P. Claverys, The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins, Research in Microbiology, vol.148, issue.2, pp.119-131, 1997.
DOI : 10.1016/S0923-2508(97)87643-7

J. P. Claverys, A new family of high-affinity ABC manganese and zinc permeases, Research in Microbiology, vol.152, issue.3-4, pp.231-243, 2001.
DOI : 10.1016/S0923-2508(01)01195-0

R. Novak, J. Braum, E. Charpentier, and E. Tuomanen, Penicillin tolerance genes of Streptococcus pneumoniae: the ABC-type manganese permease complex Psa, Molecular Microbiology, vol.29, issue.5, pp.1285-1296, 1998.
DOI : 10.1016/0378-1119(81)90139-6

A. Dintilhac, G. Alloing, C. Granadel, and J. P. Claverys, : Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases, Molecular Microbiology, vol.25, issue.04, pp.727-739, 1997.
DOI : 10.1046/j.1365-2958.1997.5111879.x

B. Spellerberg, E. Rozdzinski, S. Martin, J. Weber-heynemann, N. Schnitzler et al., Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin, Infect. Immun, vol.67, pp.871-878, 1999.

A. Elsner, B. Kreikemeyer, A. Braun-kiewnick, B. Spellerberg, B. A. Buttaro et al., Involvement of Lsp, a Member of the LraI-Lipoprotein Family in Streptococcus pyogenes, in Eukaryotic Cell Adhesion and Internalization, Infection and Immunity, vol.70, issue.9, pp.4859-4869, 2002.
DOI : 10.1128/IAI.70.9.4859-4869.2002

T. Tenenbaum, B. Spellerberg, R. Adam, M. Vogel, K. S. Kim et al., Streptococcus agalactiae invasion of human brain microvascular endothelial cells is promoted by the laminin-binding protein Lmb. Microbes Infect, pp.714-720, 2007.

Y. Terao, S. Kawabata, E. Kunitomo, I. Nakagawa, and S. Hamada, Novel laminin-binding protein of Streptococcus pyogenes, Lbp, is involved in adhesion to epithelial cells, Infect. Immun, vol.70, pp.993-997, 2002.

A. Gaballa and J. D. Helmann, Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis, 1998.

D. C. Desrosiers, Y. C. Sun, A. A. Zaidi, C. H. Eggers, D. L. Cox et al., : analysis of metal specificities and expression profiles, Molecular Microbiology, vol.72, issue.1, pp.137-152, 2007.
DOI : 10.1111/j.1365-2958.2007.05771.x

S. Banerjee, B. Wei, M. Bhattacharyya-pakrasi, H. B. Pakrasi, and T. J. Smith, Structural Determinants of Metal Specificity in the Zinc Transport Protein ZnuA from Synechocystis 6803, Journal of Molecular Biology, vol.333, issue.5, pp.1061-1069, 2003.
DOI : 10.1016/j.jmb.2003.09.008

S. I. Patzer and K. Hantke, The Zinc-responsive Regulator Zur and Its Control of theznu Gene Cluster Encoding the ZnuABC Zinc Uptake System in Escherichia coli, Journal of Biological Chemistry, vol.275, issue.32, pp.24321-24332, 2000.
DOI : 10.1074/jbc.M001775200

D. Lu, B. Boyd, and C. A. Lingwood, Identification of the Key Protein for Zinc Uptake in Hemophilus influenzae, Journal of Biological Chemistry, vol.272, issue.46, pp.29033-29038, 1997.
DOI : 10.1074/jbc.272.46.29033

S. Paik, A. Brown, C. L. Munro, C. N. Cornelissen, and T. Kitten, The sloABCR Operon of Streptococcus mutans Encodes an Mn and Fe Transport System Required for Endocarditis Virulence and Its Mn-Dependent Repressor, Journal of Bacteriology, vol.185, issue.20, pp.5967-5975, 2003.
DOI : 10.1128/JB.185.20.5967-5975.2003

J. W. Johnston, D. E. Briles, L. E. Myers, and S. K. Hollingshead, Mn2+-Dependent Regulation of Multiple Genes in Streptococcus pneumoniae through PsaR and the Resultant Impact on Virulence, Infection and Immunity, vol.74, issue.2, pp.1171-1180, 2006.
DOI : 10.1128/IAI.74.2.1171-1180.2006

P. E. Kolenbrander, R. N. Andersen, R. A. Baker, and H. F. Jenkinson, The adhesion-associated sca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn 2+ uptake, 1998.

R. Janulczyk, S. Ricci, and L. Bjorck, MtsABC Is Important for Manganese and Iron Transport, Oxidative Stress Resistance, and Virulence of Streptococcus pyogenes, Infection and Immunity, vol.71, issue.5, pp.2656-2664, 2003.
DOI : 10.1128/IAI.71.5.2656-2664.2003

A. Cockayne, P. J. Hill, N. B. Powell, K. Bishop, C. Sims et al., Molecular cloning of a 32-kilodalton lipoprotein component of a novel ironregulated Staphylococcus epidermidis ABC transporter, Infect. Immun, vol.66, pp.3767-3774, 1998.

V. V. Bartsevich and H. B. Pakrasi, Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process, EMBO J, vol.14, pp.1845-1853, 1995.

V. Rukhman, R. Anati, M. Melamed-frank, and N. Adir, The MntC crystal structure suggests that import of Mn 2+ in cyanobacteria is redox controlled, 2005.

M. Sabri, S. Leveille, and C. M. Dozois, A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide, Microbiology, vol.152, issue.3, pp.745-758, 2006.
DOI : 10.1099/mic.0.28682-0

URL : https://hal.archives-ouvertes.fr/pasteur-00720808

S. W. Bearden and R. D. Perry, The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague, Molecular Microbiology, vol.43, issue.2, pp.403-414, 1999.
DOI : 10.1016/0168-6445(93)90011-W

Q. Que and J. D. Helmann, Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins, Molecular Microbiology, vol.169, issue.6, pp.1454-1468, 2000.
DOI : 10.1046/j.1365-2958.2000.01811.x

K. R. Hazlett, F. Rusnak, D. G. Kehres, S. W. Bearden, L. Vake et al., Operon Encodes a Multiple Metal Transporter, a Zinc-dependent Transcriptional Repressor, and a Semi-autonomously Expressed Phosphoglycerate Mutase, Journal of Biological Chemistry, vol.278, issue.23, pp.20687-20694, 2003.
DOI : 10.1074/jbc.M300781200

J. E. Posey, J. M. Hardham, S. J. Norris, and F. C. Gherardini, Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum, Proc. Natl Acad. Sci. USA, pp.10887-10892, 1999.
DOI : 10.1073/pnas.96.19.10887

E. M. Panina, A. A. Mironov, and M. S. Gelfand, Comparative genomics of bacterial zinc regulons: Enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins, Proc. Natl Acad. Sci. USA, pp.9912-9917, 2003.
DOI : 10.1073/pnas.1733691100

M. C. Lawrence, P. A. Pilling, V. C. Epa, A. M. Berry, A. D. Ogunniyi et al., The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein, Structure, vol.6, issue.12, pp.1553-1561, 1998.
DOI : 10.1016/S0969-2126(98)00153-1

R. K. Deka, Y. H. Lee, K. E. Hagman, D. Shevchenko, C. A. Lingwood et al., Physicochemical evidence that Treponema pallidum TroA is a zinc-containing metalloprotein that lacks porin-like structure, J. Bacteriol, vol.181, pp.4420-4423, 1999.

H. Li and G. Jogl, Crystal Structure of the Zinc-binding Transport Protein ZnuA from Escherichia coli Reveals an Unexpected Variation in Metal Coordination, Journal of Molecular Biology, vol.368, issue.5, pp.1358-1366, 2007.
DOI : 10.1016/j.jmb.2007.02.107

C. E. Outten and T. V. O-'halloran, Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis, Science, vol.292, issue.5526, pp.2488-2492, 2001.
DOI : 10.1126/science.1060331

K. Hantke, Bacterial zinc uptake and regulators, Current Opinion in Microbiology, vol.8, issue.2, pp.196-202, 2005.
DOI : 10.1016/j.mib.2005.02.001

G. David, K. Blondeau, M. Schiltz, S. Penel, and A. Lewit-bentley, YodA from Escherichia coli Is a Metal-binding, Lipocalin-like Protein, Journal of Biological Chemistry, vol.278, issue.44, pp.43728-43735, 2003.
DOI : 10.1074/jbc.M304484200

URL : https://hal.archives-ouvertes.fr/hal-00427400

A. Sali and T. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

F. Kartzen, M. Deshmukh, F. Daldal, and J. Becwith, Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD, EMBO J, vol.21, pp.3360-3369, 2002.

J. Adamou, J. Heinrichs, A. Erwin, W. Walsh, T. Gayle et al., Identification and Characterization of a Novel Family of Pneumococcal Proteins That Are Protective against Sepsis, Infection and Immunity, vol.69, issue.2, pp.949-958, 2001.
DOI : 10.1128/IAI.69.2.949-958.2001

M. J. Jedrzejas, Unveiling molecular mechanisms of bacterial surface proteins: Streptococcus pneumoniae as a model organism for structural studies, Cellular and Molecular Life Sciences, vol.64, issue.21, pp.2799-2822, 2007.
DOI : 10.1007/s00018-007-7125-8

G. D. Van-dyune, R. F. Standaert, P. A. Karplus, S. L. Schreiber, and J. Clardy, Atomic Structures of the Human Immunophilin FKBP-12 Complexes with FK506 and Rapamycin, Journal of Molecular Biology, vol.229, issue.1, pp.105-124, 1993.
DOI : 10.1006/jmbi.1993.1012

C. Attali, C. Frolet, C. Durmort, J. Offant, T. Vernet et al., Streptococcus pneumoniae Choline-Binding Protein E Interaction with Plasminogen/Plasmin Stimulates Migration across the Extracellular Matrix, Infection and Immunity, vol.76, issue.2, pp.446-476, 2008.
DOI : 10.1128/IAI.01261-07

M. Roth, P. Carpentier, O. Kaikati, J. Joly, P. Charrault et al., FIP: a highly automated beamline for multiwavelength anomalous diffraction experiments, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.5, pp.805-814, 2002.
DOI : 10.1107/S0907444902003943

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, Journal of Applied Crystallography, vol.26, issue.6, pp.795-800, 1993.
DOI : 10.1107/S0021889893005588

C. M. Weeks and R. Miller, version 2.0, Journal of Applied Crystallography, vol.32, issue.1, pp.120-124, 1999.
DOI : 10.1107/S0021889898010504

G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, and W. Paciorek, 2.0, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.11, pp.2023-2030, 2003.
DOI : 10.1107/S0907444903017694

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255