S. Bratton, R. Chestnut, and J. Ghajar, Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds, J Neurotrauma, vol.24, issue.1, pp.59-64, 2007.

J. Chang, T. Youn, and D. Benson, Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury*, Critical Care Medicine, vol.37, issue.1, pp.283-290, 2009.
DOI : 10.1097/CCM.0b013e318192fbd7

M. Oddo, J. Levine, and L. Mackenzie, Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure, Neurosurgery, vol.69, pp.1037-1082, 2011.

M. Stiefel, A. Spiotta, and V. Gracias, Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring, Journal of Neurosurgery, vol.103, issue.5, pp.805-811, 2005.
DOI : 10.3171/jns.2005.103.5.0805

P. Narotam, J. Morrison, and N. Nathoo, Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen???directed therapy, Journal of Neurosurgery, vol.111, issue.4, pp.672-682, 2009.
DOI : 10.3171/2009.4.JNS081150

G. Rosenthal, J. Hemphill, . Iii, and M. Sorani, Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury*, Critical Care Medicine, vol.36, issue.6, pp.1917-1924, 2008.
DOI : 10.1097/CCM.0b013e3181743d77

K. Masamoto and K. Tanishita, Oxygen Transport in Brain Tissue, Journal of Biomechanical Engineering, vol.131, issue.7, p.74002, 2009.
DOI : 10.1115/1.3184694

S. Jespersen and L. Østergaard, The Roles of Cerebral Blood Flow, Capillary Transit Time Heterogeneity, and Oxygen Tension in Brain Oxygenation and Metabolism, Journal of Cerebral Blood Flow & Metabolism, vol.16, issue.2, pp.264-277, 2012.
DOI : 10.1152/ajpheart.01012.2005

R. Vaz, A. Sarmento, and N. Borges, Ultrastructural study of brain microvessels in patients with traumatic cerebral contusions, Acta Neurochirurgica, vol.60, issue.3, pp.215-220, 1997.
DOI : 10.1007/BF01844754

A. Rodríguez-baeza, F. Reina-de-la-torre, and A. Poca, Morphological features in human cortical brain microvessels after head injury: A three-dimensional and immunocytochemical study, The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol.253, issue.1, pp.583-593, 2003.
DOI : 10.1002/ar.a.10069

R. Bullock, W. Maxwell, and D. Graham, Glial swelling following human cerebral contusion: an ultrastructural study., Journal of Neurology, Neurosurgery & Psychiatry, vol.54, issue.5, pp.427-434, 1991.
DOI : 10.1136/jnnp.54.5.427

W. Dietrich, O. Alonso, and M. Halley, Early Microvascular and Neuronal Consequences of Traumatic Brain Injury: A Light and Electron Microscopic Study in Rats, Journal of Neurotrauma, vol.11, issue.3, pp.289-301, 1994.
DOI : 10.1089/neu.1994.11.289

S. Schwarzmaier, S. Kim, and R. Trabold, Temporal Profile of Thrombogenesis in the Cerebral Microcirculation after Traumatic Brain Injury in Mice, Journal of Neurotrauma, vol.27, issue.1, pp.121-130, 2010.
DOI : 10.1089/neu.2009.1114

D. Menon, J. Coles, and A. Gupta, Diffusion limited oxygen delivery following head injury*, Critical Care Medicine, vol.32, issue.6, pp.1384-1390, 2004.
DOI : 10.1097/01.CCM.0000127777.16609.08

L. Velly, L. Pellegrini, and B. Guillet, Erythropoietin 2nd cerebral protection after acute injuries: A double-edged sword?, Pharmacology & Therapeutics, vol.128, issue.3, pp.445-459, 2010.
DOI : 10.1016/j.pharmthera.2010.08.002

L. Ponce, J. Navarro, and O. Ahmed, Erythropoietin neuroprotection with traumatic brain injury, Pathophysiology, vol.20, issue.1, 2012.
DOI : 10.1016/j.pathophys.2012.02.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390457

I. Yatsiv, N. Grigoriadis, and C. Simeonidou, Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury, The FASEB Journal, vol.19, pp.1701-1703, 2005.
DOI : 10.1096/fj.05-3907fje

C. Robertson, R. Garcia, and S. Gaddam, Treatment of Mild Traumatic Brain Injury with an Erythropoietin-Mimetic Peptide, Journal of Neurotrauma, vol.30, issue.9, 2012.
DOI : 10.1089/neu.2012.2431

O. Verdonck, H. Lahrech, and G. Francony, Erythropoietin Protects from Post-Traumatic Edema in the Rat Brain, Journal of Cerebral Blood Flow & Metabolism, vol.19, issue.7, pp.1369-1376, 2007.
DOI : 10.1097/00004647-199908000-00006

URL : https://hal.archives-ouvertes.fr/inserm-00381772

P. Bouzat, G. Francony, and S. Thomas, Reduced brain edema and functional deficits after treatment of diffuse traumatic brain injury by carbamylated erythropoietin derivative*, Critical Care Medicine, vol.39, issue.9, pp.2099-2105, 2011.
DOI : 10.1097/CCM.0b013e31821cb7b2

URL : https://hal.archives-ouvertes.fr/inserm-00658345

Y. Xiong, A. Mahmood, and C. Qu, Erythropoietin Improves Histological and Functional Outcomes after Traumatic Brain Injury in Mice in the Absence of the Neural Erythropoietin Receptor, Journal of Neurotrauma, vol.27, issue.1, pp.205-215, 2010.
DOI : 10.1089/neu.2009.1001

L. Cherian, J. Goodman, and C. Robertson, Neuroprotection with Erythropoietin Administration Following Controlled Cortical Impact Injury in Rats, Journal of Pharmacology and Experimental Therapeutics, vol.322, issue.2, pp.789-794, 2007.
DOI : 10.1124/jpet.107.119628

A. Marmarou, M. Foda, and W. Van-den-brink, A new model of diffuse brain injury in rats, Journal of Neurosurgery, vol.80, issue.2, pp.291-300, 1994.
DOI : 10.3171/jns.1994.80.2.0291

T. Christen, B. Lemasson, and N. Pannetier, Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation, NMR in Biomedicine, vol.29, issue.1, pp.393-403, 2011.
DOI : 10.1002/nbm.1603

URL : https://hal.archives-ouvertes.fr/inserm-00629822

E. Barbier, L. Lamalle, and M. Décorps, Methodology of brain perfusion imaging, Journal of Magnetic Resonance Imaging, vol.11, issue.Suppl 5, pp.496-520, 2001.
DOI : 10.1002/jmri.1073

I. Troprès, S. Grimault, and A. Vaeth, Vessel size imaging, Magnetic Resonance in Medicine, vol.45, issue.3, pp.397-408, 2001.
DOI : 10.1002/1522-2594(200103)45:3<397::AID-MRM1052>3.3.CO;2-V

B. Lemasson, T. Christen, and X. Tizon, Assessment of multiparametric MRI in a human glioma model to monitor cytotoxic and anti-angiogenic drug effects, NMR in Biomedicine, vol.57, issue.(6 Suppl 16), pp.473-482, 2011.
DOI : 10.1002/nbm.1611

URL : https://hal.archives-ouvertes.fr/inserm-00607949

T. Christen, G. Zaharchuk, and N. Pannetier, Quantitative MR estimates of blood oxygenation based on T2*: A numerical study of the impact of model assumptions, Magnetic Resonance in Medicine, vol.107, issue.5, pp.1458-1468, 2012.
DOI : 10.1002/mrm.23094

URL : https://hal.archives-ouvertes.fr/inserm-00753894

W. Spees, D. Yablonskiy, and M. Oswood, Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility,T1,T2,T*2, and non-Lorentzian signal behavior, Magnetic Resonance in Medicine, vol.39, issue.4, pp.533-542, 2001.
DOI : 10.1002/mrm.1072

X. He and D. Yablonskiy, Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state, Magnetic Resonance in Medicine, vol.48, issue.1, pp.115-126, 2007.
DOI : 10.1002/mrm.21108

H. An, Q. Liu, and Y. Chen, Evaluation of MR-Derived Cerebral Oxygen Metabolic Index in Experimental Hyperoxic Hypercapnia, Hypoxia, and Ischemia, Stroke, vol.40, issue.6, pp.2165-2172, 2009.
DOI : 10.1161/STROKEAHA.108.540864

T. Christen, B. Lemasson, and N. Pannetier, Is T2* Enough to Assess Oxygenation? Quantitative Blood Oxygen Level???Dependent Analysis in Brain Tumor, Radiology, vol.262, issue.2, pp.495-502, 2012.
DOI : 10.1148/radiol.11110518

URL : https://hal.archives-ouvertes.fr/inserm-00753882

S. Valable, B. Lemasson, and R. Farion, study, NMR in Biomedicine, vol.90, issue.3, pp.1043-1056, 2008.
DOI : 10.1002/nbm.1278

URL : https://hal.archives-ouvertes.fr/inserm-00861168

A. Johnston, L. Steiner, and J. Coles, Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury*, Critical Care Medicine, vol.33, issue.1, pp.189-95, 2005.
DOI : 10.1097/01.CCM.0000149837.09225.BD

E. Shimosegawa, J. Hatazawa, and M. Ibaraki, Metabolic penumbra of acute brain infarction: A correlation with infarct growth, Annals of Neurology, vol.51, issue.4, pp.495-504, 2005.
DOI : 10.1002/ana.20427

D. Menon, Procrustes, the Traumatic Penumbra, and Perfusion Pressure Targets in Closed Head Injury, Anesthesiology, vol.98, issue.4, pp.805-807, 2003.
DOI : 10.1097/00000542-200304000-00002

M. Abate, M. Trivedi, and T. Fryer, Early Derangements in Oxygen and Glucose Metabolism Following Head Injury: The Ischemic Penumbra and Pathophysiological Heterogeneity, Neurocritical Care, vol.33, issue.3, pp.319-325, 2008.
DOI : 10.1007/s12028-008-9119-2

S. Valable, G. Francony, and P. Bouzat, The Impact of Erythropoietin on Short-Term Changes in Phosphorylation of Brain Protein Kinases in a Rat Model of Traumatic Brain Injury, Journal of Cerebral Blood Flow & Metabolism, vol.282, issue.2, pp.361-369, 2010.
DOI : 10.1038/jcbfm.2009.222

URL : https://hal.archives-ouvertes.fr/inserm-00517172

O. Sakowitz, J. Stover, and A. Sarrafzadeh, Effects of Mannitol Bolus Administration on Intracranial Pressure, Cerebral Extracellular Metabolites, and Tissue Oxygenation in Severely Head-Injured Patients, The Journal of Trauma: Injury, Infection, and Critical Care, vol.62, issue.2, pp.292-298, 2007.
DOI : 10.1097/01.ta.0000203560.03937.2d

G. Francony, B. Fauvage, and D. Falcon, Equimolar doses of mannitol and hypertonic saline in the treatment of increased intracranial pressure*, Critical Care Medicine, vol.36, issue.3, pp.795-800, 2008.
DOI : 10.1097/CCM.0B013E3181643B41

URL : https://hal.archives-ouvertes.fr/inserm-00398794

M. Diringer, M. Scalfani, and A. Zazulia, Cerebral Hemodynamic and Metabolic Effects of Equi-Osmolar Doses Mannitol and 23.4% Saline in Patients with Edema Following Large Ischemic Stroke, Neurocritical Care, vol.70, issue.8, pp.11-17, 2011.
DOI : 10.1007/s12028-010-9465-8

M. Moriyama, A. Jayakumar, and X. Tong, Role of mitogen-activated protein kinases in the mechanism of oxidant-induced cell swelling in cultured astrocytes, Journal of Neuroscience Research, vol.22, pp.2450-2458, 2010.
DOI : 10.1002/jnr.22400

K. Rao, A. Jayakumar, and P. Reddy, Aquaporin-4 in manganesetreated cultured astrocytes, Glia, vol.58, pp.1490-1499, 2010.

E. Kilic, U. Kilic, and J. Soliz, Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways, The FASEB Journal, vol.19, pp.2026-2028, 2005.
DOI : 10.1096/fj.05-3941fje

S. Kroppenstedt, U. Thomale, and M. Griebenow, Effects of early and late intravenous norepinephrine infusion on cerebral perfusion, microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats, Critical Care Medicine, vol.31, issue.8, pp.2211-2221, 2003.
DOI : 10.1097/01.CCM.0000080482.06856.62

J. Lifshitz, P. Sullivan, and D. Hovda, Mitochondrial damage and dysfunction in traumatic brain injury, Mitochondrion, vol.4, issue.5-6, pp.705-713, 2004.
DOI : 10.1016/j.mito.2004.07.021

E. Gunnarson, Y. Song, and J. Kowalewski, Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection, Proceedings of the National Academy of Sciences, vol.106, issue.5, pp.1602-1607, 2009.
DOI : 10.1073/pnas.0812708106