J. Ferlay, H. Shin, F. Bray, D. Forman, C. Mathers et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008, International Journal of Cancer, vol.8, issue.19, pp.2893-2917, 2010.
DOI : 10.1002/ijc.25516

E. Van-cutsem, B. Nordlinger, and A. Cervantes, Advanced colorectal cancer: ESMO Clinical Practice Guidelines for treatment, Annals of Oncology, vol.21, issue.Supplement 5, pp.93-97, 2010.
DOI : 10.1093/annonc/mdq222

Y. Pommier, Camptothecins and Topoisomerase I; A Foot in the Door. Targeting the Genome Beyond Topoisomerase I with Camptothecins and Novel Anticancer Drugs; Importance of DNA Replication, Repair and Cell Cycle Checkpoints, Current Medicinal Chemistry-Anti-Cancer Agents, vol.4, issue.5, pp.429-434, 2004.
DOI : 10.2174/1568011043352777

Y. Pommier, E. Leo, H. Zhang, and C. Marchand, DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs, Chemistry & Biology, vol.17, issue.5, pp.421-433, 2010.
DOI : 10.1016/j.chembiol.2010.04.012

Y. Pommier, DNA Topoisomerase I Inhibitors: Chemistry, Biology, and Interfacial Inhibition, Chemical Reviews, vol.109, issue.7, pp.2894-2902, 2009.
DOI : 10.1021/cr900097c

Y. Pommier, P. Pourquier, Y. Urasaki, J. Wu, and G. Laco, Topoisomerase I inhibitors: selectivity and cellular resistance, Drug Resistance Updates, vol.2, issue.5, pp.307-318, 1999.
DOI : 10.1054/drup.1999.0102

C. Gongora, N. Vezzio-vie, S. Tuduri, V. Denis, A. Causse et al., New Topoisomerase I mutations are associated with resistance to camptothecin, Molecular Cancer, vol.10, issue.1, pp.64-77, 2011.
DOI : 10.1016/j.jmb.2004.03.077

URL : https://hal.archives-ouvertes.fr/inserm-00602236

Y. Xu and M. Villalona-calero, Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity, Annals of Oncology, vol.13, issue.12, pp.1841-1851, 2002.
DOI : 10.1093/annonc/mdf337

S. Paillas, F. Boissière, F. Bibeau, A. Denouel, C. Mollevi et al., Targeting the p38 MAPK Pathway Inhibits Irinotecan Resistance in Colon Adenocarcinoma, Cancer Research, vol.71, issue.3, pp.1041-1049, 2011.
DOI : 10.1158/0008-5472.CAN-10-2726

URL : https://hal.archives-ouvertes.fr/inserm-00555572

M. Maliepaard, M. Van-gastelen, D. Jong, L. Pluim, D. et al., ABCP gene in a topotecan-selected ovarian tumor cell line, Cancer Res, vol.59, pp.4559-4563, 1999.

M. Brangi, T. Litman, M. Ciotti, K. Nishiyama, G. Kohlhagen et al., Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantroneresistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells, Cancer Res, vol.59, pp.5938-5946, 1999.

L. Candeil, I. Gourdier, D. Peyron, N. Vezzio, V. Copois et al., ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases, International Journal of Cancer, vol.63, issue.6, pp.848-854, 2004.
DOI : 10.1002/ijc.20032

D. Cunningham, Y. Humblet, S. Siena, D. Khayat, H. Bleiberg et al., Cetuximab Monotherapy and Cetuximab plus Irinotecan in Irinotecan-Refractory Metastatic Colorectal Cancer, New England Journal of Medicine, vol.351, issue.4, pp.337-345, 2004.
DOI : 10.1056/NEJMoa033025

R. Amado, M. Wolf, M. Peeters, E. Van-cutsem, S. Siena et al., Is Required for Panitumumab Efficacy in Patients With Metastatic Colorectal Cancer, Journal of Clinical Oncology, vol.26, issue.10, pp.1626-1634, 2008.
DOI : 10.1200/JCO.2007.14.7116

S. Wilhelm, L. Adnane, P. Newell, A. Villanueva, J. Llovet et al., Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling, Molecular Cancer Therapeutics, vol.7, issue.10, pp.3129-3140, 2008.
DOI : 10.1158/1535-7163.MCT-08-0013

B. Escudier, T. Eisen, W. Stadler, C. Szczylik, S. Oudard et al., Sorafenib in Advanced Clear-Cell Renal-Cell Carcinoma, New England Journal of Medicine, vol.356, issue.2, pp.125-134, 2007.
DOI : 10.1056/NEJMoa060655

J. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane et al., Sorafenib in Advanced Hepatocellular Carcinoma, New England Journal of Medicine, vol.359, issue.4, pp.378-390, 2008.
DOI : 10.1056/NEJMoa0708857

M. Beeram, A. Patnaik, and E. Rowinsky, Raf: A Strategic Target for Therapeutic Development Against Cancer, Journal of Clinical Oncology, vol.23, issue.27, pp.6771-6790, 2005.
DOI : 10.1200/JCO.2005.08.036

Y. Wei, Y. Ma, Q. Zhao, Z. Ren, Y. Li et al., New Use for an Old Drug: Inhibiting ABCG2 with Sorafenib, Molecular Cancer Therapeutics, vol.11, issue.8, pp.1693-1702, 2012.
DOI : 10.1158/1535-7163.MCT-12-0215

T. Chou, Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies, Pharmacological Reviews, vol.58, issue.3, pp.621-681, 2006.
DOI : 10.1124/pr.58.3.10

T. Chou, Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method, Cancer Research, vol.70, issue.2, pp.440-446, 2010.
DOI : 10.1158/0008-5472.CAN-09-1947

S. Wilhelm, C. Carter, L. Tang, D. Wilkie, A. Mcnabola et al., BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis, Cancer Research, vol.64, issue.19, pp.7099-7109, 2004.
DOI : 10.1158/0008-5472.CAN-04-1443

A. Awada, A. Hendlisz, T. Gil, S. Bartholomeus, M. Mano et al., Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours, British Journal of Cancer, vol.64, issue.10, pp.1855-1861, 2005.
DOI : 10.1038/sj.onc.1204614

J. Clark, J. Eder, D. Ryan, C. Lathia, and H. Lenz, Safety and Pharmacokinetics of the Dual Action Raf Kinase and Vascular Endothelial Growth Factor Receptor Inhibitor, BAY 43-9006, in Patients with Advanced, Refractory Solid Tumors, Clinical Cancer Research, vol.11, issue.15, pp.5472-5480, 2005.
DOI : 10.1158/1078-0432.CCR-04-2658

M. Moore, H. Hirte, L. Siu, A. Oza, S. Hotte et al., Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors, Annals of Oncology, vol.16, issue.10, pp.1688-1694, 2005.
DOI : 10.1093/annonc/mdi310

D. Strumberg, H. Richly, R. Hilger, N. Schleucher, S. Korfee et al., Phase I Clinical and Pharmacokinetic Study of the Novel Raf Kinase and Vascular Endothelial Growth Factor Receptor Inhibitor BAY 43-9006 in Patients With Advanced Refractory Solid Tumors, Journal of Clinical Oncology, vol.23, issue.5, pp.965-972, 2005.
DOI : 10.1200/JCO.2005.06.124

K. Mross, S. Steinbild, F. Baas, D. Gmehling, M. Radtke et al., Results from an in vitro and a clinical/pharmacological phase I study with the combination irinotecan and sorafenib, European Journal of Cancer, vol.43, issue.1, pp.55-63, 2007.
DOI : 10.1016/j.ejca.2006.08.032

N. Azad, A. Dasari, J. Arcaroli, G. Taylor, D. Laheru et al., Phase I pharmacokinetic and pharmacodynamic study of cetuximab, irinotecan and sorafenib in advanced colorectal cancer, Investigational New Drugs, vol.129, issue.1, pp.345-54, 2012.
DOI : 10.1007/s10637-012-9820-z

S. Hu, Z. Chen, R. Franke, S. Orwick, M. Zhao et al., Interaction of the Multikinase Inhibitors Sorafenib and Sunitinib with Solute Carriers and ATP-Binding Cassette Transporters, Clinical Cancer Research, vol.15, issue.19, pp.6062-6069, 2009.
DOI : 10.1158/1078-0432.CCR-09-0048

S. Carloni, F. Fabbri, G. Brigliadori, P. Ulivi, R. Silvestrini et al., Tyrosine Kinase Inhibitors Gefitinib, Lapatinib and Sorafenib Induce Rapid Functional Alterations in Breast Cancer Cells, Current Cancer Drug Targets, vol.10, issue.4, pp.422-431, 2010.
DOI : 10.2174/156800910791208580

M. Mogi, Y. J. Lambert, J. Colvin, G. Shiojima, I. Skurk et al., Akt Signaling Regulates Side Population Cell Phenotype via Bcrp1 Translocation, Journal of Biological Chemistry, vol.278, issue.40, pp.39068-39075, 2003.
DOI : 10.1074/jbc.M306362200

X. Ding, J. Wu, and C. Jiang, ABCG2: A potential marker of stem cells and novel target in stem cell and cancer therapy, Life Sciences, vol.86, issue.17-18, pp.631-637, 2010.
DOI : 10.1016/j.lfs.2010.02.012

D. Fang, Y. Kim, C. Lee, S. Aggarwal, K. Mckinnon et al., Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery, British Journal of Cancer, vol.63, issue.8, pp.1265-1275, 2010.
DOI : 10.3748/wjg.14.925

A. Jayanthan, D. Bernoux, P. Bose, K. Riabowol, and A. Narendran, Multi-tyrosine kinase inhibitors in preclinical studies for pediatric CNS AT/RT: Evidence for synergy with Topoisomerase-I inhibition, Cancer Cell International, vol.11, issue.1, pp.44-55, 2011.
DOI : 10.1038/ncb1792

C. Peer, T. Sissung, A. Kim, L. Jain, S. Woo et al., Sorafenib Is an Inhibitor of UGT1A1 but Is Metabolized by UGT1A9: Implications of Genetic Variants on Pharmacokinetics and Hyperbilirubinemia, Clinical Cancer Research, vol.18, issue.7, pp.2099-2107, 2012.
DOI : 10.1158/1078-0432.CCR-11-2484

J. Cummings, B. Ethell, L. Jardine, G. Boyd, J. Macpherson et al., Glucuronidation as a mechanism of intrinsic drug resistance in human colon cancer: reversal of resistance by food additives, Cancer Res, vol.63, pp.8443-8450, 2003.

H. Namboodiri, M. Bukhtiyarova, J. Ramcharan, M. Karpusas, Y. Lee et al., Analysis of Imatinib and Sorafenib Binding to p38?? Compared with c-Abl and b-Raf Provides Structural Insights for Understanding the Selectivity of Inhibitors Targeting the DFG-Out Form of Protein Kinases, Biochemistry, vol.49, issue.17, pp.3611-3618, 2010.
DOI : 10.1021/bi100070r

V. Grossi, M. Liuzzi, S. Murzilli, N. Martelli, A. Napoli et al., Sorafenib inhibits p38?? activity in colorectal cancer cells and synergizes with the DFG-in inhibitor SB202190 to increase apoptotic response, Cancer Biology & Therapy, vol.13, issue.14, pp.1471-1481, 2012.
DOI : 10.1038/nchembio799

H. Mcdaid, L. Lopez-barcons, A. Grossman, M. Lia, S. Keller et al., Enhancement of the Therapeutic Efficacy of Taxol by the Mitogen-Activated Protein Kinase Kinase Inhibitor CI-1040 in Nude Mice Bearing Human Heterotransplants, Cancer Research, vol.65, issue.7, pp.2854-2860, 2005.
DOI : 10.1158/0008-5472.CAN-04-4391

M. Ychou, O. Bouche, S. Thezenas, E. Francois, A. Adenis et al., Final results of a multicenter phase II trial assessing sorafenib (S) in combination with irinotecan (i) as second- or later-line treatment in metastatic colorectal cancer (mCRC) patients (pts) with KRAS-mutated tumors (mt; NEXIRI)., Journal of Clinical Oncology, vol.29, issue.15_suppl, p.15, 2011.
DOI : 10.1200/jco.2011.29.15_suppl.e14002

+. Sn, nM for 96 hours Apoptosis was determined by 7-AAD and Annexin V- FLUOS staining with a FACScan. F: HCT116 cell cycle distribution after sorafenib 0.5 µM +, nM was measured by propidium iodide staining with a FACScan flow cytometer

H. Intracellular-accumulation-in-hct116-s, H. , H. , and H. Cells, D: Flow cytometric analysis of SN-38 intracellular accumulation in HCT116, SW48, SW620 and HT29 cells E: Flow cytometry analysis of SN-38 intracellular accumulation in HCT116-s, HCT116-SN6, HCT116-A2, HCT116-SN50 and HCT116-G7 cells after exposure to SN-38 alone or in combination with sorafenib. The SN-38+sorafenib values are relative to the SN-38 alone values (set to 1) in order to compare the fold change between conditions. F: Flow cytometry analysis of SN-38 intracellular accumulation in HCT116, SW48, SW620 and HT29 cells following exposure to SN-38 alone or in combination with sorafenib. The SN-38+sorafenib values are relative to the SN-38 alone values (set to 1) to compare the fold change between conditions. G: Western blot analysis of ABCG2 expression, HCT116-A2 and HCT116 SN50 treated with Sorafenib 0

S. Shluc, Protein loading is shown by GAPDH. B: Flow cytometric analysis of

I. Sorafenib, . Alone, and . Sorafenib-alone, Quantitative data were obtained using the G- Box from Syngene and the GenTools software B: The phosphorylation of p38 and ERK was verified by Western Blotting on protein extract from xenografts from 5 different mice. Equal loading is shown by Tubulin. Quantification of phospho-p38 (pp38) and phospho-ERK (pERK) relative to Tubulin. Histograms represent the mean of the 5 different mice for each treatment