Does MPTP intoxication in mice induce metabolite changes in the nucleus accumbens? A 1H nuclear MRS study

Carine Chassain, Guy Bielicki, Carole Carcenac, Anne-Claire Ronsin, Jean-Pierre Renou, Marc Savasta, Franck Durif

To cite this version:

HAL Id: inserm-00858273
http://www.hal.inserm.fr/inserm-00858273
Submitted on 24 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Does MPTP intoxication in mice induce metabolite changes in the nucleus accumbens? A 1H nuclear magnetic resonance spectroscopy study

Carine Chassain1,4, Guy Bielicki2, Carole Carcenac3, Anne-Claire Ronsin4, Jean-Pierre Renou2, Marc Savasta3, Franck Durif1,4.

1 CHU Clermont-Ferrand, Service of Neurology, F-63001 Clermont-Ferrand, France.
2 INRA, Centre Clermont-Ferrand/Theix, platform RMSB, F-63122 Saint Genès Champanelle, France.
3 INSERM U836, Dynamic and Pathophysiology of Basal Ganglia, Grenoble Institute of Neurosciences, BP 170, F-38042 Grenoble, Cedex 9, France.
4 Univ Clermont 1, UFR Medicine, EA 7980, F-63001 Clermont-Ferrand, France.

* Running title: A severe DA denervation in VTA induces metabolite changes in the NAc

To whom correspondence should be addressed: Carine Chassain, CHU Clermont-Ferrand, Service of Neurology, 58 rue Montalembert, F-63001 Clermont-Ferrand, France; Tel.: +33 4 73 62 48 13; Fax: +33 4 73 62 40 89; Email: carine.chassain@clermont.inra.fr

number of pages: 37; number of figures: 9
number of words: in abstract: 266; in introduction: 556; discussion: 1569.
ABSTRACT

Using in vivo 1H NMR spectroscopy in a mouse model of Parkinson's disease, we previously showed, that glutamate concentrations in the dorsal striatum were highest after dopamine denervation associated with an increase in GABA and glutamine levels. The aim of this study was to determine whether the changes previously observed in the motor part of the striatum were reproduced in a ventral part of the striatum, the nucleus accumbens (NAc). This study was carried out on controls and MPTP-intoxicated mice. In vivo spectra were acquired for a voxel (8 µl) in the dorsal striatum, and in the NAc (1.56 µl). NMR acquisitions were first performed 10 days after the last MPTP injection in basal condition (after saline i.p. injection) and then in the same animal the week after basal NMR acquisitions, after acute levodopa administration (200mg.kg$^{-1}$, i.p.). Immunohistochemistry was used to determine the levels of glutamate, glutamine synthetase (GS) and GAD67 in these two structures.

The glutamate, glutamine and GABA concentrations obtained in the basal state were higher in the NAc of MPTP-intoxicated mice which have the higher dopamine denervation in the ventral tegmental area (VTA) and in the dorsal striatum. Levodopa decreased the levels of these metabolites in MPTP-intoxicated mice to levels similar to those in controls. In parallel immunohistochemical staining showed that glutamate, GS and GAD67–immunoreactivity increased in the dorsal striatum of MPTP-intoxicated mice and in NAc for animals with a severe dopamine denervation in VTA.

These findings strongly supported a hyperactivity of the glutamatergic cortico-striatal pathway and changes in glial activity when the dopaminergic denervation in the VTA and SNc was severe.

Keywords: MPTP-intoxicated mice, 1H NMR spectroscopy, Glu, Gln, GABA, dorsal striatum, NAc
INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by a severe loss of dopaminergic neurons (DA neurons) close to 80% in the ventral part of the midbrain corresponding principally to the substantia nigra pars compacta (SNC) (1,2). Dopamine denervation is less severe (40%), in the dorsal SNC and the contiguous ventral tegmental area (VTA) which belongs to the dorsal part of the midbrain (3-5). These nuclei project to the ventral striatum, which includes the nucleus accumbens (NAc) and the broad continuum between the caudate nucleus and the putamen ventral to the rostral internal capsule, the limbic cortex (medial prefrontal, cingulate and entorhinal areas) and other limbic structures (septum, olfactory tubercle, amygdalus, hippocampus, pyriform cortex) (6). Degeneration of the DA neurons in the SNc causes a large concomitant decrease in dopamine levels within the dorsolateral striatum (2). This part of the striatum is connected to the premotor and motor cortices areas (7,8). Using 1H NMR spectroscopy to measured the levels of GABA and glutamate (Glu) in the dorsal striatum, we previously demonstrated significant increased Glu and GABA concentrations in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated C57Bl/6J mice (9,10). MPTP is a known neurotoxin which affects primarily (though not exclusively) the dopamine-containing neurons of the SNc. It has subsequently been used to establish a mice model of PD (11). Thus, our studies strongly suggest that the motor glutamatergic cortico-striatal pathway displays hyperactivity after MPTP intoxication accompanied by an increase in striatal GABA levels. DA denervation of the VTA induces a decrease in dopamine levels within the NAc depending on the size of the VTA lesion (12-14). Damage to the mesocorticolimbic DA pathway may contribute to the non-motor symptoms described during the progression of PD, such as apathy (15) and depression (16-18). However, the consequences of DA denervation in the VTA for Glu and GABA levels in the NAc remain unclear. Only one study has shown an increase in levels of the mRNA for isoform 67 of glutamic acid decarboxylase (GAD67), an enzyme involved in GABA-synthesis, in the anterior part and core of the NAc after DA denervation (19). These results suggest that dopamine exerts a tonic inhibitory control over GAD67 mRNA synthesis in the NAc, in normal conditions.
The objective of this study was to assess the consequences of DA denervation of the VTA and the SNc after MPTP intoxication in mice for the glutamatergic and GABAergic activities in the two target structures, the NAc and the dorsal striatum. *In vivo* 1H NMR spectroscopy was used to determine the levels of Glu, GABA and Gln in the NAc and the dorsal striatum of the MPTP-intoxicated mouse model of PD before and after DA replacement (intraperitoneal i.p. injection of the precursor of the dopamine, the levodopa). The concentrations obtained in the NAc were compared with the concentrations of Glu, GABA and Gln found in the dorsal striatum. We have chosen MRS due to its ability to make repeated direct non-invasive measurements of brain metabolites *in vivo*. Measurement of these metabolites concentrations using 1H MRS is one way to assess Glu and GABA neurotransmitters release and glial-neuronal interactions (20,21). We also used immunohistochemistry to determine the levels in the dorsal striatum and the NAc of Glu, glutamine synthetase (GS), an ubiquitous enzyme present in the astroglial cytoplasm and involved in the conversion of Glu to Gln (22), and GAD67.

EXPERIMENTAL PROCEDURES

Animals - All experiments were performed according to procedures conforming to European legislative, administrative and statutory regulations governing the protection of animals used for experimentation or other scientific purposes (86/609/EEC). The study design was approved by the Regional Experimental Care and Use Committee (Auvergne CREEA). The permit number for this study was CE 8-06.

We used male C57Bl/6J (Charles River, L’Arbresle, France) mice aged seven weeks and weighing 19 to 20g at the start of experiment. They were housed at 20-22°C under a 12-hour light/12-hour dark cycle.

Four control mice were used for specific localization of the NAc, with the aim of positioning the voxel of interest (VOI) precisely on MR images for NMR spectroscopy acquisitions. These mice were anesthetized and fitted with a cannula (outer diameter=0.23mm and length=4.5mm) implanted...
A severe DA denervation in VTA induces metabolite change in the NAc

unilaterally at the stereotaxic coordinates of the NAc, defined as in the Paxinos and Franklin (23) mouse brain atlas (coordinates with respect to bregma: A: +1.5 mm, L=0.9 mm, V=-4.0 mm). One week after surgery, MR images were acquired to visualize the trace left by the cannulae, to define anatomical landmarks and thus to localize the NAc precisely, to ensure the reproducible positioning of the VOI in the NAc.

Forty mice received i.p. injections, once daily, at 2.00 pm, for five days, of saline (0.1 ml) (20 saline-treated mice, controls) or an equivalent volume of 25 mg.kg\(^{-1}\) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; Sigma-Aldrich, St Louis, MO, USA) in saline (20 MPTP-intoxicated mice), as previously described (9,24). From them, twenty mice (10 controls and 10 MPTP-intoxicated mice) were assessed by behavioral tests and the other twenty mice were used for \(^{1}\)H NMR spectroscopy and immunohistochemistry analysis.

Behavior - All behavior tests were carried out between 8.00 am and 1.00 pm, for both groups of animals. The rotarod (25,26) and pole tests (26,27) were started the morning before the first saline or MPTP injection (d-5) and were performed three days (d3) and ten days (d10) after the last injection (fig 1). On d10, animals were tested 60 minutes after the i.p. administration of saline (0.2 ml) and the following day (d11), 60 minutes after levodopa/benserazide i.p. administration at the dose that we previously used: 200 mg.kg\(^{-1}\)/75 mg.kg\(^{-1}\) in 0.2 ml saline (10).

Rotarod test - The animals were positioned on the rotarod (TSE systems GmbH, Bad Homburg, Germany). The rotarod was programmed to rotate such that its speed increased linearly from 4 to 40 rpm in 300 seconds. An automatic sensor was used to determine the point at which the animals fell off the rod and to calculate the total time, in seconds, spent on the rod. On the days of testing, mice were trained to stay on the rod during three 60 s sessions, separated by intervals of 10 minutes. The rod did not turn at all during the first training session, and it turned at a fixed of 4 rpm in the two next. The test phase started 30 minutes later and consisted of four successive trials separated by 15-minute inter-trial intervals. The mean total time spent on the rod in the four trials was determined and is given together with the standard deviation (SD) for each group.
A severe DA denervation in VTA induces metabolite change in the NAc

The pole test involved the use of a 50 cm high wooden pole, 0.5 cm in diameter, wrapped in gauze to prevent slipping and positioned with the base in the home cage (26,27). An eraser was glued on top of the pole to help position the animals on the pole. The time at which the animal turned nose down (T_{turn} in s) and the total time required to climb down the pole (locomotion activity time, T_{LA} in s) were measured, with a maximum value of 120 s. If the mouse failed to turn nose down and instead dropped from the pole, T_{LA} was taken as 120 s (the default value), because this was assumed to indicate the maximal severity. During testing sessions at d-5, d3 and d10, each animal underwent three successive trials, with a five-minute interval between trials. The data presented are the scores obtained during the third trial and are expressed as the mean ± SD for each group of animals.

In vivo 1H NMR spectroscopy - In vivo NMR spectra were acquired at 9.4 T, on a Bruker Avance DRX 400 micro-imaging system with a wide-bore vertical magnet and an actively shielded gradient coil (Bruker, Ettlingen, Germany). The animals were assessed between 10 and 17 days after the last MPTP or saline injection (fig 1: d10 to d17) and NMR spectra were acquired after saline administration (0.2 ml; i.p.). To assess the impact of levodopa administration on the metabolites amounts, one week later each animal was assessed again (fig 1: d17 to d24) after levodopa/benserazide administration (i.p.; 200 mg.kg$^{-1}$/75 mg.kg$^{-1}$ in 0.2 ml saline). The animals were anesthetized by spontaneous inhalation, through a mask, of 1-2.4 % isoflurane and air (300 ml.min$^{-1}$). They were carefully secured in a Bruker MicroMouse 2.5 animal handling system with their heads positioned in the center of a 20 mm diameter birdcage radiofrequency coil for excitation and signal reception. The air temperature surrounding the mouse chamber was maintained at 39°C by the circulation of warm air, under the control of a heat sensor. The mice breathed freely during the NMR acquisition and the concentration of anesthetic was adjusted to maintain respiratory rate close to 80 bpm.

The positions of the VOIs were determined on T$_2$-weighted images (a single-shot multi echo -RARE sequence- echo time 36 ms, recycling time 4.5 s, 19 slices 0.8 mm thick) in accordance with data from the Paxinos and Franklin atlas (23). The dorsal striatum VOI was 8 µl (2×2×2 mm) in size. The position of the NAc VOI was determined from anatomical landmarks defined by viewing the trace left
by the cannula on the magnetic resonance images in relation with the mouse brain atlas. The anatomical landmarks were the end of the lateral ventricle and the anterior part of the anterior commissure. The NAc VOI was 1.56 µl (1.16×1.16×1.16 mm) in size. NMR spectra were obtained for both structures, for each animal. All first- and second-order shim terms were manually adjusted for the VOIs. Generally, a half-height linewidth of the water signal of 12 Hz was achieved in the dorsal striatum. The linewidth of the water signal was around 15 Hz in the NAc voxel. A point-resolved spectroscopy sequence (PRESS) was used for located signal acquisition (TE = 8.8 ms; TR = 4000 ms; spectral width = 5000 Hz). The water signal from the VOIs was suppressed by variable-power RF pulses with optimized relaxation delays (VAPOR) (28). Each spectrum acquired for the dorsal striatum corresponded to a mean of 512 scans whereas each spectrum acquired for the NAc corresponded to a mean of 1024 scans. A spectrum was acquired in the same conditions without VAPOR water suppression for the absolute quantification of metabolites. For brain 1H NMR spectroscopy, resonances of low-molecular weight metabolites, such as lactate (Lac), N-acetyl aspartate (NAA), total creatine (creatinine and phosphocreatine; tCr), total choline (glycerophosphocholine and choline; tCho), glutamate + glutamine (Glx) and myo-inositol (Myo-Ins) overlapped with those of macromolecules (proteins and lipids). To minimize the contribution of macromolecules to the absolute quantification of the metabolites, we acquired a macromolecules spectrum applying the metabolite-nulling technique (29,30). A PRESS sequence was used with an extra inversion pulse. Before this study, the inversion time recovery (TI) was adjusted to nullify the metabolite signal in the dorsal striatum and NAc of four mice. A TI of 923 ms was defined. To correct the metabolite concentration, the T_1 and T_2 relaxation times of water and NAA, tCr, tCho, Glx, Tau and Myo-Ins were calculated from spectra acquired in the two voxels, as previously published (9,10). Each spectrum corresponded to a mean of 4 or 128 scans for water and metabolites T_1 and T_2 determinations, respectively. Signals were acquired with an echo time of 8.8 ms and five different recycling times ($T_{R_{1-5}} = 1000/2000/4000/8000/10000$ ms) for longitudinal relaxation time (T_1) measurements and with $TR=4000$ ms and 10 different echo times ($T_{E_{1-10}} = \ldots$
8.8/20/30/40/60/80/100/130/180/250 ms) for transversal relaxation time (T_2) measurements. The relaxation times (T_1 and T_2) measured were in accordance with those previously published (9). In vivo metabolite concentrations were determined from VOI spectra after subtraction of the macromolecules spectrum with jMRUI software. The quantification method used was the time-domain semi-parametric algorithm QUEST, based on signals for a basis set of simulated metabolites. This basis set of metabolites included the following nine molecules: tCr, tCho, GABA, Glu, Gln, Lac, Myo-Ins, NAA and Tau. The intensity of the water signal obtained from non-suppressed water spectra was used as an internal reference. For this purpose, we determined the brain water content for four control mice and four MPTP-intoxicated mice. Animals were killed by decapitation and their brains were quickly removed and dried in a drying oven. The percentage water content was calculated from the difference in weight between the freshly removed whole brain and its residue after dehydration. The water content of controls mouse brain was 78.6% ± 2.4%, whereas that of MPTP-intoxicated mouse brain was 79.6% ± 1.8% (values similar to published data, 9,31,32). We assumed the visibility of the water signal to be 100% and used a water molarity of 55.5M. Corrections were performed to take account of the T_2 and T_1 effects of water and metabolites, as previously described (9,10). For each metabolite, we applied the T_1 correction factor \(1/(1-\exp(-TR/T_1))\) with TR=4s and the T_2 correction factor \(1/\exp(-TE/T_2)\) with TE=8.8 ms.

The reliability of metabolite quantification was assessed from the average Cramer-Rao lower bounds (CRLB) calculated by jMRUI. CRLB are estimates of the % SD of the fit for each metabolite (33,34). Only results with a CRLB \leq 30% were included in the analysis. In vivo results are expressed in mM, as means ± SD.

Immunohistochemical labels

Tissue preparation - Following the acquisition of NMR spectra, five controls and five MPTP-intoxicated mice chosen at random were killed 60 minutes after the i.p. injection of saline. Five controls and five MPTP-intoxicated mice, also chosen at random were killed 60 minutes after the i.p. injection of levodopa/benserazide (i.p.; 200 mg.kg$^{-1}$/75 mg.kg$^{-1}$ in 0.2 ml saline). These animals were
A severe DA denervation in VTA induces metabolite change in the NAc

deeply anesthetized with sodium pentobarbital (180 mg kg\(^{-1}\); i.p.) and then transcardially perfused with 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Their brains were removed, post-fixed by incubation in the same buffer for 1 h at 4°C and included in paraffin. We prepared 7 µm coronal sections from the substantia nigra (SNc) and the ventral tegmental area (VTA) for tyrosine hydroxylase (TH) immunohistochemistry, to validate the DA loss after MPTP intoxication. We also prepared 7 µm coronal sections from the dorsal striatum and the NAc for glutamate (Glu), glutamate decarboxylase (GAD) isoform GAD67 and glutamine synthetase (GS) analyses.

Immunohistochemical staining - Tissue sections were deparaffinized by incubation with xylene and were then rehydrated. Antigen retrieval was performed by bringing slides to the boil in 10 mM sodium citrate, pH 6.0, maintaining them just below boiling point for 20 minutes, and then cooling them at 20°C for 20 minutes. The sections were then washed for five minutes in distilled water and 10 minutes in wash buffer [0.1% Tween 20, 50 mM NaF in 1X Tris-buffer saline (TBS)], then incubated for 10 minutes in buffer containing 3% H\(_2\)O\(_2\) (Peroxidase blocking solution DAKOCytomation, Carpinteria, CA, USA). They were then washed again in the wash buffer for 10 minutes. The SNc and VTA sections were incubated overnight at 4°C with a rabbit polyclonal anti-TH antibody (1:500; Chemicon International, Temecula, CA, USA). The dorsal striatum and NAc sections were incubated overnight at 4°C with a rabbit polyclonal anti-Glu antibody (1:5; Chemicon International), a mouse monoclonal anti-GAD67 antibody (1:500; Chemicon International), or a mouse monoclonal anti-GS antibody (1:300; Chemicon International). The slides were washed and treated with biotinylated secondary antibody (Kit LSAB + System-HRP, DAKOCytomation) for 30 minutes at 20°C. The slides were then washed in 0.1% Tween 20 in 1X TBS, incubated for 30 minutes at 20°C with streptavidine-HRP complex (DAKOCytomation) and washed again in 0.1% Tween 20 in 1X TBS. Diaminobenzidine substrate (DAKOCytomation) was added and the slices were incubated at 20°C. The reaction was stopped by immersing the slides in distilled water, and the slides were sealed for visualization by light microscopy.
A severe DA denervation in VTA induces metabolite change in the NAc

Quantitative analysis of immunostained cells - The immunostained cells were counted automatically on recorded images, with IPS 32 software (SAMBA 2005, SAMBA Technologies, Meylan, France). For each group of animals, we show the total number of positive cells, expressed as mean ± SD.

Statistical analysis - NMR data were compared by two-way analysis of variance (ANOVA) with repeated measures for one factor (treatment: saline and levodopa). A Dunnett post-hoc test was carried out if the ANOVA was significant. Behavioral data were compared by repeated measures ANOVA, followed by a Newman-Keuls post-hoc test if the ANOVA was significant. The numbers of immunostained cells in the four groups of mice were compared in a two-way ANOVA, which was followed by a Dunnett post-hoc test if the ANOVA was significant. Analyses were performed with SAS V.8.1 statistical software (Cary, NC, USA). The concentrations of GABA, Glu and Gln in the NAc, as determined by NMR spectroscopy, are expressed as a function of the number of TH-immunoreactive cells in the VTA. Linearity was assessed by calculating the correlation coefficient r.

RESULTS

Number of dopaminergic neurons in the SNc and VTA - MPTP intoxication significantly decreased (by 85 %) the mean number of TH-immunoreactive neurons in the SNc, as shown by comparison with control values (fig 2; 66 ± 13 vs 428 ± 36 TH-immunoreactive positive cells, respectively; p < 0.001). Levodopa administration had no impact on the number of TH-immunoreactive neurons in the SNc of controls (428 ± 36 vs. 417 ± 54) or of MPTP-intoxicated mice (66 ± 13 vs. 63 ± 17). The mean number of TH-immunoreactive neurons in the VTA decreased by 44 % after MPTP intoxication (fig 2; 88 ± 13 TH-immunoreactive positive cells for controls vs 49 ± 10 TH-immunoreactive positive cells for MPTP-intoxicated mice; p < 0.05). Levodopa administration also had no effect on the number of TH-immunoreactive neurons in the VTA of controls (88 ± 13 vs 90 ± 8) or of MPTP-intoxicated mice (49 ± 10 vs 43 ± 12). DA denervation was homogeneous in the SNc, while there was a large interindividual variation of the lesion in the VTA (see below).
Behavior changes after MPTP intoxication - The performance of control and MPTP-intoxicated animals in the rotarod test (fig 3) was assessed as the total time spent on the rod, expressed in seconds. The animals in the control group spent significantly more time on the rod in the third trial session (d10) than at d-5 and d0 (d10: 164 ± 9 s vs d-5: 103 ± 10 s and vs d3: 114 ± 10 s; **p<0.01).

Significantly more time was spent on the rod on d10, than on the following day, after levodopa administration (200 mg·kg$^{-1}$; i.p.) (d10: 164 ± 9 s vs d11: 127 ± 15 s; **p<0.01). Whereas controls performed significantly better in the third assessment than during the first two assessments, MPTP-intoxicated mice spent similar amounts of time on the rod at d-5, d3 and d10. Levodopa administration significantly improved rotarod performance in MPTP-intoxicated mice (d11: 157 ± 14 s vs d10: 116 ± 9 s; **p<0.01). Thus, controls spent more time on the rod than MPTP-intoxicated mice at d10 (164 ± 9 s vs 116 ± 9 s; p<0.05) but less time than MPTP-intoxicated mice on day 11, after levodopa administration (127 ± 15 s vs 157 ± 14 s; #p<0.05).

In the pole test, MPTP-intoxicated mice needed significantly more time to turn completely than controls at d10 (fig 4A: MPTP-intoxicated mice: 7.1 ± 2.6 s vs controls: 2.2 ± 0.4 s; ##p<0.01). Furthermore MPTP-intoxicated mice required significantly longer to turn at d10 than before MPTP injection (d10: 7.1 ± 2.6 s vs d-5: 1.9 ± 0.2 s; **p<0.01). Levodopa administration (200 mg·kg$^{-1}$; i.p.) at d11 tended to decrease the amount of time required for turning, but this difference was not significant (d10: 7.1 ± 2.6 s vs d11 (+Ldopa): 4.4 ± 1.1 s; p=0.13). The time required for the control mice to turn did not differ between the three testing sessions, but these mice tended to take longer to reach the floor after levodopa administration (200 mg·kg$^{-1}$; i.p.). At d10, MPTP-intoxicated mice required significantly longer to reach the floor than control mice (fig 4B: MPTP-intoxicated mice: 13.7 ± 2.9 s vs controls: 8.2 ± 0.9 s; #p<0.05). Furthermore, the time required for MPTP-intoxicated mice to reach the floor at d10 was significantly greater than that before MPTP injection (d10: 13.7 ± 2.9 s vs d-5: 7.6 ± 0.7 s; **p<0.01). Levodopa administration at d11 significantly decreased this time (d10: 13.7 ± 2.9 s vs d11 (+Ldopa): 9.7 ± 1.5 s; *p<0.05).
A severe DA denervation in VTA induces metabolite change in the NAc

Metabolite levels in the dorsal striatum and NAc, as assessed in vivo by 1H-NMR spectroscopy

- In vivo 1H NMR spectra for the corresponding brain regions are shown in figure 5. The spectra shown in figure 5A were acquired from the dorsal striatum of a control mouse and a MPTP-intoxicated mouse after saline injection and levodopa (200 mg.kg$^{-1}$) administration. Those in figure 5B were from the NAc. The resulting high degree of spectral resolution permitted unequivocal signal assignment. In addition to the usual signals for NAA (2.008 ppm), tCr (3.022 ppm) and tCho (3.22 ppm), the resonances of several brain metabolites Glu (2.34 ppm), Gln (2.42 ppm), GABA (2.28 ppm), Lac (1.33 ppm), Tau (3.24-3.42 ppm) and Myo-Ins (3.48-3.52 ppm) were clearly resolved. Thus, nine brain metabolites were reliably quantified. NAA, tCr, Tau and Glu were quantified in the two brain regions with Cramer-Rao lower bounds (CRLB, defined by the jMRUI software) ≤ 12% (data not shown). Gln, GABA, tCho, Myo-Ins and Lac were quantified with CRLB between 15 and 30%.

For controls, the metabolites profile obtained for the NAc and dorsal striatum were similar in the basal state (fig 5).

The Glu, Gln and GABA concentrations obtained in vivo in the basal state were significantly higher in the dorsal striatum of MPTP-intoxicated mice than in that of controls (fig 6A; Glu: 19.1 ± 1.5 vs. 10.6 ± 2.3 mM, ***p < 0.001; Gln: 5.9 ± 1.6 vs. 2.6 ± 1.1 mM, *p < 0.05; GABA: 3.9 ± 0.9 vs. 2.1 ± 0.5 mM, *p < 0.05). Levodopa decreased metabolite levels in the dorsal striatum of MPTP-intoxicated mice (Glu: 19.1 ± 1.5 vs. 10.2 ± 3.4 mM, ###p < 0.001; Gln: 5.9 ± 1.6 vs. 2.5 ± 0.9 mM, #p < 0.05; GABA: 3.9 ± 0.9 vs. 2.0 ± 0.8 mM, #p < 0.05). Metabolite levels in the dorsal striatum of MPTP-intoxicated mice treated with levodopa did not differ significantly from those in the dorsal striatum of controls. DA denervation in VTA and replacement with levodopa had no effect on the mean metabolite levels the NAc (fig 6B).

While individual data for MPTP-intoxicated mice obtained in the striatum and the percentage of DA denervation of the SNc were homogeneous (fig 7A), those measured in the NAc showed that GABA, Glu and Gln levels were the higher for animals which had a severe DA denervation, which were decreased after levodopa administration (fig 7B). A DA denervation of 59% in the VTA (mean
A severe DA denervation in VTA induces metabolite change in the NAc

denervation for the three animals which have the more severe DA denervation in the VTA) was
necessary to induce changes in metabolites levels. Furthermore, the concentrations of GABA, Glu and
Gln in the NAc were significantly and inversely correlated with the number of TH-immunoreactive
neurons in the VTA (respectively $r = -0.7834$, $p<0.05$; $r = -0.9896$, $p<0.01$ and $r = -0.8403$, $p<0.05$).

GAD67, Glu and GS labeling in the dorsal striatum and NAc - Immunohistochemical labeling
of GABAergic neurons with a monoclonal GAD67 antibody revealed a high density of intensely
stained neurons throughout all parts of the dorsal striatum and the NAc (fig 8A). Labeling with the
anti-Glu antibody revealed the presence of a high density of Glu-positive granules in the dorsal
striatum and NAc, corresponding to the intra- and extracellular pool of Glu. GS immunoreactivity was
demonstrated in the cytoplasm and processes of glial cells in the two areas of the brain studied.

In the dorsal part of the striatum, MPTP intoxication increased the number GAD67-positive neurons to
levels significantly higher than those for controls (fig 8B; 2883 ± 238 vs 1501 ± 64; $p<0.001$). The
number of Glu-positive granules was also higher in the dorsal striatum of MPTP-intoxicated mice than
controls (11455 ± 1560 vs 5399 ± 446; $p<0.01$). Furthermore, the number of GS-positive astrocytes
was significantly higher in the dorsal striatum of MPTP-intoxicated mice than in that of controls ($7283
\pm 585$ vs 3440 ± 454; $p<0.01$). Levodopa administration had no impact on the number of GAD-
immunoreactive neurons, Glu-positive granules and GS-positive astrocytes in the dorsal striatum of
controls and MPTP-intoxicated mice. DA denervation or replacement with levodopa had no impact on
the mean number of positive neurons, granules and astrocytes in the NAc (fig 8B). However,
individual data showed that GAD67, Glu and GS positive cells assessed in the NAc were higher for
animals which had a severe DA denervation in the VTA (fig 9B).

DISCUSSION

This work illustrated the possibility to follow in vivo, using short-echo PRESS NMR localized
spectroscopy, the metabolites levels in a small volume (1.56 µl) encompassing the NAc. We first
showed that the metabolic profile of this structure was identical to this obtained in the dorsal striatum.
Secondly, the MPTP intoxication of the mice increased GABA, Glu and Gln concentrations in the dorsal striatum and in the NAc showing that the DA denervation was sufficient in the VTA (>59%). Thirdly, levodopa decreased metabolite levels in the dorsal striatum of MPTP-intoxicated mice and in the NAc for MPTP-intoxicated animals which showed the highest levels of GABA, Glu and Gln. Finally, changes in metabolites concentrations in the dorsal striatum and in the NAc were associated with changes in Glu metabolism, as shown by immunohistochemistry and characterized by an increase in the number of GAD67-reactive-neurons, Glu-positive granules and GS-positive astrocytes.

In this study, jMRUI fitting to the spectra acquired for the NAc yielded the same neurochemical profile as obtained for the dorsal striatum. Anatomically, the NAc is a major part of the ventral striatum and the cell types present are similar to those in the dorsal striatum. Indeed, 90% of the neurons in the NAc are GABAergic medium spiny neurons and the axon terminals in the NAc are mainly DA terminals from the VTA and glutamatergic neurons from the prefrontal cortex (35). It is therefore not particularly surprising that the metabolic profiles of these two structures are similar.

Glu and GABA levels in the dorsal striatum, as assessed by 1H NMR spectroscopy were dramatically increased after MPTP intoxication. Changes were also observed in the NAc for animals which had the most severe VTA denervation (>59%). In fact, change in metabolites levels in the striatum depends on the severity of the dopaminergic lesion of the SNc and the VTA, which induces in turn a dramatic decrease of dopamine level in the dorsal and ventral striatum. Indeed, all studies which reported changes in glutamatergic cortico-striatal and GABAergic activity in the dorsal striatum have been shown in animal models to display a decrease of more than 60% in the number of DA neurons in SNc (9,10,36). Furthermore, Retaux et al. (19), showed that a bilateral total electrolytic lesion of the VTA in the rat induced an increase in GAD67 mRNA levels in the anterior and core part of the NAc. In our study, MPTP intoxication decreased the number of DA neurons by a mean of 85% in the SNc, and 44% in the VTA which may explain why no significant change of mean metabolites levels was observed in the NAc. The different profile of dopaminergic denervation in the SNc and the VTA could
be due to a specific sensitivity of dopaminergic neurons to MPTP. A more severe dopaminergic denervation in the SNc than in the VTA is commonly observed in other studies using MPTP (37-39). Furthermore, in PD, highly vulnerable DA subpopulations within the SNc and their axonal projections to dorsal parts of the striatum are almost completely lost, whereas neighboring DA subpopulations within the VTA and their projections to the NAc have much higher survival rates (1,40). The dopamine deficiency is thus much greater in the dorsal striatal than in the NAc (12).

Taken together, these results suggest that changes in metabolite levels in the NAc and the dorsal striatum may be linked to the severity of DA denervation in the VTA and the SNc and could be used as a marker of the severity of the disease. Other studies assessing the relationship between the severity of the dopaminergic lesion in SNc and VTA and the change in striatal metabolite levels are mandatory to confirm this hypothesis.

The increase in Glu levels observed after MPTP intoxication was consistent with the increase in the number of Glu-positive granules observed on immunohistolabeling. It confirmed our previous results (9,10) and it was in accordance with several other studies showing long-term changes in excitatory striatal inputs after dopamine depletion, such as an increase in striatal Glu release, in mean percentage of asymmetrical synapses and phosphorylation, and in the abundance of Glu receptor subunits (36,41-44). The high levels of GABA after MPTP intoxication were consistent with the increase in the number of GAD67-immunoreactive neurons in the dorsal striatum and the NAc of dopamine-depleted mice. These changes were due to an increase in the basal activity of striatal neurons following DA denervation, because GAD67 expression is considered to be an index of GABAergic striatal efferent neuron activity (45,46). And several other studies showed an increased in the electrical activity of GABAergic neurons (47), the enhanced release of GABA (48) and an increase in GAD67 mRNA levels (49).

Finally, the increase in Gln levels after MPTP intoxication was associated with higher GS immunolabeling in the dorsal striatum and in the NAc of MPTP-intoxicated mice. These results suggested that DA denervation modifies glial activity. Similarly, a recent study clearly demonstrated a
A severe DA denervation in VTA induces metabolite change in the NAc

A relationship between GLT-1, a glial high-affinity Na\(^+\)/K\(^+\)-dependent Glu transporter, and changes in extracellular Glu levels in the dorsal striatum of hemi-parkinsonian rat (50). The authors showed an upregulation of both the production and function of striatal GLT-1 after unilateral 6-OHDA lesioning. They hypothesized that an interplay between several glial and vesicular Glu transporter families might underlie abnormal glutamatergic neurotransmission in PD. There are several possible reasons for the increase in glial activity in the dopamine-depleted dorsal striatum. Firstly, the DA denervation may directly induce an increase in GS activity and, thus, glial hyperactivity. Secondly, the increase in Gln levels in the neuronal and/or the glial in the striatum of MPTP-intoxicated mice may be related to an increase in the Glu/Gln cycling and, by inference, synaptic glutamatergic transmission. Glu released by glutamatergic neurons has been shown to be taken up from the synapses rapidly by glia, through high-affinity Glu transporters, and converted into Gln by GS (51). Gln is subsequently released by astrocytes and taken up by neuronal terminals, in which it is converted enzymatically (glutaminase) back into Glu, thereby replenishing the neurotransmitter pool of Glu. This Glu/Gln cycle between neurons and astrocytes predominantly reflects the rates of Glu release and reuptake, thus providing an indication of synaptic glutamatergic activity (52-55).

The present investigation did not show changes in other amino acids absolute levels after MPTP intoxication in the dorsal striatum and the NAc. Our results could be consistent with the absence of neuronal death in the striatum of PD. Furthermore, abundant NAA levels in unaffected GABAergic cells within the striatum may be masking its depletion, as dopaminergic nerve terminals affected by MPTP represent only 9% of all synapses in the striatum (56).

A single challenge dose of levodopa (200 mg.kg\(^{-1}\)) normalizes Glu, Gln and GABA levels in the dorsal striatum of MPTP-intoxicated mice, and also in the NAc for mice which had high GABA, Glu and Gln levels following severe dopaminergic denervation in VTA. This high dose of levodopa induced a decrease in the motor performance of controls probably related to the sedative effect of levodopa (57), but we nonetheless chose to use this dose, which is known to induce behavioral changes (58) and changes in levels of striatal metabolites (59) in MPTP-intoxicated mice. This high
A severe DA denervation in VTA induces metabolite change in the NAc
dose of levodopa may attenuate hyperactivity of the glutamatergic cortico-striatal pathway, thereby
decreasing the levels of Glu and, subsequently, Gln and GABA. Changes in Glu, Gln and GABA
levels were not associated with changes in the intensity of immunolabelings performed 60 minutes
after acute levodopa administration. Carta et al. (60) showed that, three days after priming, a single
administration of levodopa yielded changes in GAD67 mRNA levels in all striatal neurons not
observed in drug-naïve 6-OHDA-lesioned rats. We suggest that the short time interval between
levodopa administration and immunolabelings (60 minutes) might account for the lack of change in
the staining observed.

In this study, we chose to use the rotarod and pole tests to assess the motor behavior of mice.
The rotarod test is widely used in the evaluation of MPTP models (61). We observed significant
differences in performance between MPTP-intoxicated mice and controls. In general, the results
obtained depended strongly on the dose of the toxin administered. Low and moderate MPTP doses
produced no measurable impairment, whereas higher doses, such as that used here, have been shown
to trigger performance deficiencies in the rotarod test (62). The pole test was used to assess the agility
of the animals (27,61,62). This task involved skilled grasping by the forelimbs and maneuvering
requiring the basal ganglia to be intact. The decrease in pole test performance described here was
consistent with that reported in previous studies (26) and reflected a nigrostriatal dysfunction.
Levodopa administration improved the rotarod performance and also the results to the pole test of
MPTP-intoxicated mice. Taken together, these behavior results reflect a dysfunction of the basal
ganglia that was improved by levodopa administration and thus confirms a striatal dopaminergic
deficit following the dopaminergic lesion induced by MPTP in the SNc and the VTA.

In conclusion, localized 1H NMR spectroscopy assessed the metabolic profile longitudinally in
vivo according to the animal model and the therapeutic strategy in the dorsal striatum and NAc of the
mice. A sufficient DA denervation in the VTA and the SNc induced increased levels of Glu, Gln and
GABA in the NAc and the dorsal striatal nerve cell terminals.
ACKNOWLEDGEMENTS

This work was supported by a France Parkinson Foundation grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
REFERENCES

A severe DA denervation in VTA induces metabolite change in the NAc

A severe DA denervation in VTA induces metabolite change in the NAc

A severe DA denervation in VTA induces metabolite change in the NAc

FIGURE 1. Experimental design.

All behavior tests were performed between 8.00 am and 1.00 pm, for both groups of animals (n=10 controls and n=10 MPTP-intoxicated mice). The first rotarod and pole tests were carried out the morning before the first saline or MPTP injection (d-5) and further tests were performed three days (d3) and ten days (d10) after the last injection. Animals were tested 60 minutes after the intraperitoneal administration of saline (0.2 ml) on d10 and 60 minutes after the administration of levodopa (200 mg.kg\(^{-1}\) in 0.2 ml saline) on d11.

NMR acquisitions were performed for both other groups of animals (n=10 controls and n=10 MPTP-intoxicated mice) and begun ten days following the last MPTP injection, on d10. Spectra were acquired after the i.p. administration of saline (d10). One week later (d17), each animal was assessed again after the i.p. administration of levodopa. Animals were killed humanely once all the NMR acquisitions had been acquired (d24), 60 minutes after the i.p. administration of saline (n=5 controls and n=5 MPTP-intoxicated mice) and 60 minutes after the i.p. administration of levodopa (200 mg.kg\(^{-1}\) in 0.2 ml saline; n=5 controls and n=5 MPTP-intoxicated mice).
FIGURE 2. Effect of MPTP treatment on TH-immunoreactivity in SNc and VTA coronal sections.

A. Photomicrographs of representative posterior SNc and VTA sections stained with an antibody against TH. The tissues were collected 10 days after the last MPTP injection. The MPTP-intoxicated mice (5 × 25 mg.kg⁻¹, once daily for 5 days, i.p.) have fewer TH-positive neurons than the controls.

Scale bar, 1 mm

B. MPTP administration led to a significant decrease (85%) in the mean number of TH-immunoreactive neurons in the SNc, as shown by comparison with control values. A decrease of 44% was observed in the VTA. Means ± SD of five mice per group are presented, ***p < 0.001 and *p < 0.05 versus controls, in a two-way ANOVA followed by a Dunnett post-hoc test.

A.

<table>
<thead>
<tr>
<th></th>
<th>SNc</th>
<th>VTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPTP-intoxicated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.

<table>
<thead>
<tr>
<th></th>
<th>SNc</th>
<th>VTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of positive cells</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Controls (n=5) - MPTP-intoxicated mice (n=5)
- Controls + Ldopa (n=5) - MPTP-intoxicated mice + Ldopa (n=5)

Figure 2 –

Chassain et al. - MRS in NAc of MPTP-intoxicated mice
FIGURE 3. Time (s) spent on the rotarod for control mice (n=10) and MPTP-intoxicated mice (n=10).

Saline or MPTP was injected once daily for 5 days. Animals were tested on the rotarod before saline or MPTP injection (d-5), and 3 days (d3) and 10 days (d10) after the last saline or MPTP injection. On d11, they were also assessed after levodopa (200 mg.kg⁻¹; i.p.) administration. In the testing session, animals underwent four successive trials and the data presented are the means for these four trials. Results are presented as means ± SD (for 10 animals in each group). Within each group (controls or MPTP-intoxicated mice), asterisks (**) indicate a significant difference (p<0.01) with respect to the values obtained for the other trial sessions. #p<0.05 versus the corresponding control mean in repeated measures ANOVA followed by a Newman-Keuls post-hoc test.
FIGURE 4. Effect of MPTP on the pole test performances.

Saline or MPTP was injected into the mice once daily for 5 days. The pole test was performed before saline or MPTP injection (d-5), 3 days (d3) and 10 days (d10) after the last saline or MPTP injection. On d11, the test was performed after levodopa (200 mg.kg⁻¹; i.p.) administration. A mouse was placed head upwards close to the top of a rough-surfaced pole. The times required for the animal to turn completely (Tturn) and to reach the floor (TLA) were measured and are shown in A and in B, respectively. In the testing session, animals underwent three successive trials and the data presented are those obtained in the third trial. Results are presented as means ± SD (for 10 animals in each group).

A. Tturn. In the control group, the mean obtained after levodopa administration on d11 was significantly higher than the other values (*p<0.05). In the MPTP-treated group, there was a significant difference between d10 on the one hand and d-5 and d3 on the other (**p<0.01). ##p<0.01 versus the corresponding control mean in a repeated measures ANOVA followed by a Newman-Keuls post-hoc test.

B. TLA. Within the MPTP-treated group, there was a significant difference between the results obtained on d10 and those obtained on d-5 and d3 (**p<0.01). There was also a significant difference between the results obtained on d10 and d11 (+Ldopa) (*p<0.05). ##p<0.01 versus the corresponding control mean in a repeated measures ANOVA followed by a Newman-Keuls post-hoc test.

A severe DA denervation in VTA induces metabolite change in the NAc

Chassain et al. - MRS in NAc of MPTP-intoxicated mice
FIGURE 5. Coronal MR images of the mouse brain with the volumes of interest (VOIs) centered on the dorsal striatum (A) and NAc (B) and NMR spectra for the corresponding brain regions in a control and an MPTP-intoxicated mouse, after the administration of saline and levodopa.

The NMR images were acquired with a T_2-weighted sequence, RARE (in-plane resolution 100 × 100 µm/pixel, slice thickness 1 mm, TE = 36 ms, TR = 4.5 s).

The NMR spectra were acquired with PRESS localization, with TE = 8.8ms, TR = 4000 ms, NS = 512 for acquisition in the dorsal striatum and NS = 1024 for acquisition in the NAc; acquisition times were 34 min and 68 min respectively. Spectra were line-broadened (5 Hz), and resonances were assigned as N-acetyl aspartate (NAA) at 2.008 ppm; γ-aminobutyric acid (GABA) at 2.27 ppm, glutamate (Glu) at 2.34 ppm, glutamine (Gln) at 2.42 ppm; total creatine (tCr) at 3.022 ppm and 3.98 ppm, total choline (tCho) at 3.22 ppm; taurine (Tau) at 3.24-3.42 ppm; myoinositol (Myo-Ins) at 3.48-3.52 ppm; Glu + Gln complex (Glx) at 3.75 ppm.

A. Spectra acquired for a VOI (2.0 × 2.0 × 2.0 mm) located on the dorsal part of the striatum, for a control mouse and an MPTP-intoxicated mouse, after the administration of saline and levodopa (200 mg.kg$^{-1}$) injection.

B. Spectra acquired in a VOI (1.16 × 1.16 × 1.16 mm) located in the NAc, for a control mouse and an MPTP-intoxicated mouse, after the administration of saline and levodopa (200 mg.kg$^{-1}$) injection.
A severe DA denervation in VTA induces metabolite change in the NAc.

Figure 5 –

Chassain et al. - MRS in NAc of MPTP-intoxicated mice
A severe DA denervation in VTA induces metabolite change in the NAc

FIGURE 6. Absolute metabolite concentrations (mM) quantified in the dorsal striatum (A) and NAc (B) of controls and MPTP-intoxicated mice, determined by in vivo 1H NMR after saline and levodopa administration (200 mg.kg$^{-1}$).

Data are the means ± SD for 10 animals in the two controls groups and 10 animals in the two MPTP-intoxicated mouse groups. Statistically significant differences are indicated for comparisons between the metabolite concentrations of controls and MPTP-intoxicated mice after the administration of saline and levodopa (200 mg.kg$^{-1}$), for repeated measures analysis of variance followed by a Dunnett post-hoc test. Significant differences were observed only in the dorsal part of the striatum and are indicated as: *p < 0.05; ***p < 0.001 controls + saline vs. MPTP-intoxicated mice + saline and #p < 0.05; ###p < 0.001 MPTP-intoxicated mice + saline vs. MPTP-intoxicated mice + levodopa.
Figure 6 –

Chassain et al. - MRS in NAc of MPTP-intoxicated mice
FIGURE 7. Individual data measured in the dorsal striatum and the NAc in relation to DA denervation of the SNc (A) and the VTA (B), respectively. Plotted are the GABA, Glu and Gln concentrations assessed by NMR spectroscopy in the dorsal striatum (A) and the NAc (B). Individual data points represent individual measures for the MPTP-intoxicated mice, which have been sacrificed for TH immunohistochemical staining, after saline and levodopa administration (n=5). The percentages of DA denervation in the SNc and the VTA are indicated on the right. Horizontal bars are the mean value for each group of subjects.
A severe DA denervation in VTA induces metabolite change in the NAc

Figure 7 –

Chassain et al. - MRS in NAc of MPTP-intoxicated mice
FIGURE 8. Effect of MPTP intoxication on GAD67, Glu and GS labeling in the dorsal striatum and NAc.

A. Visualization of GAD67, Glu and GS immunolabeling in coronal slices of the dorsal part of the dorsal striatum and the NAc. The lines delimit the dorsal striatum and the area of the NAc in which immunoreactive cells were counted. Typical labeling for GAD67, Glu and GS is shown (arrows) in the insets (×20).

Scale bar, 1 mm.

B. Quantitative analysis of the effect of DA denervation and DA replacement on the same markers in the dorsal striatum and the NAc (n=5 animals from each of the 4 experimental groups). Data are expressed as the mean number of immunoreactive cells ± SD. Statistical comparisons were performed by two-way ANOVA, followed by Dunnett’s test. **p < 0.01 and ***p < 0.001 versus the control group.
A severe DA denervation in VTA induces metabolite change in the NAc

Figure 8 – Chassain et al. - MRS in NAc of MPTP-intoxicated mice
A severe DA denervation in VTA induces metabolite change in the NAc

FIGURE 9. Individual data measured in the dorsal striatum and the NAc in relation to DA denervation of the SNc (A) and the VTA (B), respectively.

Plotted are the immunoreactive cells counted in the dorsal striatum and the NAc. Individual data points represent individual measures for the MPTP-intoxicated mice, which have been sacrificed for TH immunohistochemical staining, after saline and levodopa administration (n=5). The percentages of DA denervation in the SNc and the VTA are indicated on the right. Horizontal bars are the mean value for each group of subjects.

A.

B.