L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J. Exp. Med, vol.204, pp.1071-1081, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00136917

H. B. Bae, J. W. Zmijewski, J. S. Deshane, J. M. Tadie, D. D. Chaplin et al., AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils, The FASEB Journal, vol.25, issue.12, pp.4358-4368, 2011.
DOI : 10.1096/fj.11-190587

E. Y. Chung, J. Liu, Y. Homma, Y. Zhang, A. Brendolan et al., Interleukin-10 Expression in Macrophages during??Phagocytosis of Apoptotic Cells Is Mediated by??Homeodomain Proteins Pbx1 and Prep-1, Immunity, vol.27, issue.6, pp.952-964, 2007.
DOI : 10.1016/j.immuni.2007.11.014

B. E. Clausen, C. Burkhardt, W. Reith, R. Renkawitz, and I. Forster, Conditional gene targeting in macrophages and granulocytes using LysMcre mice, Transgenic Research, vol.8, issue.4, pp.265-277, 1999.
DOI : 10.1023/A:1008942828960

S. Galic, M. D. Fullerton, J. D. Schertzer, S. Sikkema, K. Marcinko et al., Hematopoietic AMPK ??1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity, Journal of Clinical Investigation, vol.121, issue.12, pp.4903-4915, 2011.
DOI : 10.1172/JCI58577DS1

F. Geissmann, S. Jung, and D. R. Littman, Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties, Immunity, vol.19, issue.1, pp.71-82, 2003.
DOI : 10.1016/S1074-7613(03)00174-2

F. Ginhoux, F. Tacke, V. Angeli, M. Bogunovic, M. Loubeau et al., Langerhans cells arise from monocytes in vivo, Nature Immunology, vol.174, issue.3, pp.265-273, 2006.
DOI : 10.1038/ni1307

S. Giri, N. Nath, . Smith, B. Viollet, A. K. Singh et al., 5-Aminoimidazole-4-Carboxamide-1-??-4-Ribofuranoside Inhibits Proinflammatory Response in Glial Cells: A Possible Role of AMP-Activated Protein Kinase, Journal of Neuroscience, vol.24, issue.2, pp.479-487, 2004.
DOI : 10.1523/JNEUROSCI.4288-03.2004

M. A. Gronski, J. M. Kinchen, I. J. Juncadella, N. C. Franc, and K. S. And-ravichandran, An essential role for calcium flux in phagocytes for apoptotic cell engulfment and the anti-inflammatory response, Cell Death and Differentiation, vol.14, issue.10, pp.1323-1331, 2009.
DOI : 10.1074/jbc.M510647200

D. G. Hardie, AMP-activated protein kinase--an energy sensor that regulates all aspects of cell function, Genes & Development, vol.25, issue.18, pp.1895-1908, 2011.
DOI : 10.1101/gad.17420111

A. Haschemi, P. Kosma, L. Gille, C. R. Evans, C. F. Burant et al., The Sedoheptulose Kinase CARKL Directs Macrophage Polarization through Control of Glucose Metabolism, Cell Metabolism, vol.15, issue.6, pp.813-826, 2012.
DOI : 10.1016/j.cmet.2012.04.023

S. A. Hawley, D. A. Pan, K. J. Mustard, L. Ross, J. Bain et al., Calmodulin-dependent protein kinase kinase-?? is an alternative upstream kinase for AMP-activated protein kinase, Cell Metabolism, vol.2, issue.1, pp.9-19, 2005.
DOI : 10.1016/j.cmet.2005.05.009

S. A. Hawley, F. A. Ross, C. Chevtzoff, K. A. Green, A. Evans et al., Use of Cells Expressing ?? Subunit Variants to Identify Diverse Mechanisms of AMPK Activation, Cell Metabolism, vol.11, issue.6, pp.554-565, 2010.
DOI : 10.1016/j.cmet.2010.04.001

J. E. Heredia, L. Mukundan, F. M. Chen, A. A. Mueller, R. C. Deo et al., Type 2 Innate Signals Stimulate Fibro/Adipogenic Progenitors to Facilitate Muscle Regeneration, Cell, vol.153, issue.2, pp.376-388, 2013.
DOI : 10.1016/j.cell.2013.02.053

R. L. Hurley, K. A. Anderson, J. M. Franzone, B. E. Kemp, A. R. Means et al., The Ca2+/Calmodulin-dependent Protein Kinase Kinases Are AMP-activated Protein Kinase Kinases, Journal of Biological Chemistry, vol.280, issue.32, pp.29060-29066, 2005.
DOI : 10.1074/jbc.M503824200

A. M. Johann, A. Von-knethen, D. Lindemann, and B. Brune, Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-?? and attenuates the oxidative burst, Cell Death and Differentiation, vol.18, issue.9, pp.1533-1540, 2006.
DOI : 10.1189/jlb.1002487

S. Kim, K. B. Elkon, M. , and X. , Transcriptional Suppression of Interleukin-12 Gene Expression following Phagocytosis of Apoptotic Cells, Immunity, vol.21, issue.5, pp.643-653, 2004.
DOI : 10.1016/j.immuni.2004.09.009

L. Lantier, R. Mounier, J. Leclerc, M. Pende, M. Foretz et al., Coordinated maintenance of muscle cell size control by AMP-activated protein kinase, The FASEB Journal, vol.24, issue.9, pp.3555-3561, 2010.
DOI : 10.1096/fj.10-155994

URL : https://hal.archives-ouvertes.fr/inserm-00484177

T. Lawrence and C. Fong, The resolution of inflammation: Anti-inflammatory roles for NF-??B, The International Journal of Biochemistry & Cell Biology, vol.42, issue.4, pp.519-523, 2010.
DOI : 10.1016/j.biocel.2009.12.016

T. Lawrence and G. Natoli, Transcriptional regulation of macrophage polarization: enabling diversity with identity, Nature Reviews Immunology, vol.204, issue.11, pp.750-761, 2011.
DOI : 10.1038/nri3088

C. O. Martinez, M. J. Mchale, J. T. Wells, O. Ochoa, J. E. Michalek et al., Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment, AJP: Regulatory, Integrative and Comparative Physiology, vol.299, issue.3, pp.832-842, 2010.
DOI : 10.1152/ajpregu.00797.2009

F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization, Frontiers in Bioscience, vol.13, issue.13, pp.453-461, 2008.
DOI : 10.2741/2692

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nature Reviews Immunology, vol.117, issue.12, pp.958-969, 2008.
DOI : 10.1038/nri2448

R. Mounier, L. Lantier, J. Leclerc, A. Sotiropoulos, M. Pende et al., Important role for AMPK??1 in limiting skeletal muscle cell hypertrophy, The FASEB Journal, vol.23, issue.7, pp.2264-2273, 2009.
DOI : 10.1096/fj.08-119057

URL : https://hal.archives-ouvertes.fr/inserm-00363209

V. A. Narkar, W. Fan, M. Downes, R. T. Yu, J. W. Jonker et al., Exercise and PGC-1??-Independent Synchronization of Type I Muscle Metabolism and Vasculature by ERR??, Cell Metabolism, vol.13, issue.3, pp.283-293, 2011.
DOI : 10.1016/j.cmet.2011.01.019

A. Peairs, A. Radjavi, S. Davis, L. Li, A. Ahmed et al., Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells, Clinical & Experimental Immunology, vol.158, issue.3, pp.542-551, 2009.
DOI : 10.1111/j.1365-2249.2009.03924.x

E. Perdiguero, P. Sousa-victor, V. Ruiz-bonilla, M. Jardi, C. Caelles et al., p38/MKP-1???regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair, The Journal of Cell Biology, vol.119, issue.2, pp.307-322, 2011.
DOI : 10.1084/jem.20051794

A. Rivollier, J. He, A. Kole, V. Valatas, and B. L. Kelsall, Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon, J Exp Med, vol.1, pp.139-155, 2012.

J. C. Rodriguez-prados, P. G. Traves, J. Cuenca, D. Rico, J. Aragones et al., Substrate Fate in Activated Macrophages: A Comparison between Innate, Classic, and Alternative Activation, The Journal of Immunology, vol.185, issue.1, pp.605-614, 2010.
DOI : 10.4049/jimmunol.0901698

A. Creb-c, EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair, Proc. Natl. Acad. Sci. USA, pp.17475-17480

M. Saclier, H. Yacoub-youssef, A. L. Mackey, L. Arnold, H. Ardjoune et al., Differentially Activated Macrophages Orchestrate Myogenic Precursor Cell Fate During Human Skeletal Muscle Regeneration, STEM CELLS, vol.195, issue.2, pp.384-396, 2013.
DOI : 10.1002/stem.1288

URL : https://hal.archives-ouvertes.fr/inserm-00787108

D. Sag, D. Carling, R. D. Stout, and J. Suttles, Adenosine 5'-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype, The Journal of Immunology, vol.181, issue.12, pp.8633-8641, 2008.
DOI : 10.4049/jimmunol.181.12.8633

D. Sun, C. O. Martinez, O. Ochoa, L. Ruiz-willhite, J. R. Bonilla et al., Bone marrow-derived cell regulation of skeletal muscle regeneration, The FASEB Journal, vol.23, issue.2, pp.382-395, 2009.
DOI : 10.1096/fj.07-095901

H. Tokumitsu, H. Inuzuka, Y. Ishikawa, M. Ikeda, I. Saji et al., STO-609, a Specific Inhibitor of the Ca2+/Calmodulin-dependent Protein Kinase Kinase, Journal of Biological Chemistry, vol.277, issue.18, pp.15813-15818, 2002.
DOI : 10.1074/jbc.M201075200

A. Uezumi, S. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida, P72. Mesenchymal progenitors distinct from muscle satellite cells contribute to ectopic fat cell formation in skeletal muscle, Differentiation, vol.80, pp.143-152, 2010.
DOI : 10.1016/j.diff.2010.09.078

D. Vats, L. Mukundan, J. I. Odegaard, L. Zhang, K. L. Smith et al., Oxidative metabolism and PGC-1?? attenuate macrophage-mediated inflammation, Cell Metabolism, vol.4, issue.1, pp.13-24, 2006.
DOI : 10.1016/j.cmet.2006.05.011

A. Vignaud, J. P. Caruelle, I. Martelly, and A. Ferry, Differential effects of post-natal development, animal strain and long term recovery on the restoration of neuromuscular function after neuromyotoxic injury in rat, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol.143, issue.1, pp.1-8, 2006.
DOI : 10.1016/j.cbpc.2005.09.012

URL : https://hal.archives-ouvertes.fr/hal-00109693

. Functional, cellular and molecular aspects of skeletal muscle recovery after injury induced by snake venom from Notechis scutatus scutatus, Toxicon, vol.45, pp.789-801

A. Woods, K. Dickerson, R. Heath, S. P. Hong, M. Momcilovic et al., Ca2+/calmodulin-dependent protein kinase kinase-?? acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metabolism, vol.2, issue.1, pp.21-33, 2005.
DOI : 10.1016/j.cmet.2005.06.005

J. Xing, Q. Wang, K. Coughlan, B. Viollet, C. Moriasi et al., Inhibition of AMP-Activated Protein Kinase Accentuates Lipopolysaccharide-Induced Lung Endothelial Barrier Dysfunction and Lung Injury in??Vivo, The American Journal of Pathology, vol.182, issue.3, pp.1021-1030, 2013.
DOI : 10.1016/j.ajpath.2012.11.022

C. O. Yi, B. T. Jeon, H. J. Shin, E. A. Jeong, K. C. Chang et al., Resveratrol activates AMPK and suppresses LPS-induced NF-??B-dependent COX-2 activation in RAW 264.7 macrophage cells, Anatomy & Cell Biology, vol.44, issue.3, pp.194-203, 2011.
DOI : 10.5115/acb.2011.44.3.194

X. Zhao, J. W. Zmijewski, E. Lorne, G. Liu, Y. J. Park et al., Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury, AJP: Lung Cellular and Molecular Physiology, vol.295, issue.3, pp.497-504, 2008.
DOI : 10.1152/ajplung.90210.2008

E. Zigmond, C. Varol, J. Farache, E. Elmaliah, A. T. Satpathy et al., Ly6Chi Monocytes in the Inflamed Colon Give Rise to Proinflammatory Effector Cells and Migratory Antigen-Presenting Cells, Ly6C(hi) Monocytes in the Inflamed Colon Give Rise to Proinflammatory Effector Cells and Migratory Antigen-Presenting Cells, pp.1076-1090, 2012.
DOI : 10.1016/j.immuni.2012.08.026

N. Bardeesy, M. Sinha, A. F. Hezel, S. Signoretti, N. A. Hathaway et al., Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation, Nature, vol.99, issue.6903, pp.162-167, 2002.
DOI : 10.1038/35092592

M. Foretz, S. Hebrard, J. Leclerc, E. Zarrinpashneh, M. Soty et al., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, Journal of Clinical Investigation, vol.120, issue.7, pp.2355-2369, 2010.
DOI : 10.1172/JCI40671DS1

URL : https://hal.archives-ouvertes.fr/inserm-00495746

F. Geissmann, S. Jung, and D. R. Littman, Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties, Immunity, vol.19, issue.1, pp.71-82, 2003.
DOI : 10.1016/S1074-7613(03)00174-2

R. A. Miller, Q. Chu, L. J. Le, P. E. Scherer, R. S. Ahima et al., Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling, Journal of Clinical Investigation, vol.121, issue.6, pp.2518-2528, 2011.
DOI : 10.1172/JCI45942DS1

D. Montarras, C. Lindon, C. Pinset, and P. Domeyne, Cultured myf5 null and myoD null muscle precursor cells display distinct growth defects, Biology of the Cell, vol.92, issue.8-9, pp.565-572, 2000.
DOI : 10.1016/S0248-4900(00)01110-2

R. Mounier, L. Lantier, J. Leclerc, A. Sotiropoulos, M. Pende et al., Important role for AMPK??1 in limiting skeletal muscle cell hypertrophy, The FASEB Journal, vol.23, issue.7, pp.2264-2273, 2009.
DOI : 10.1096/fj.08-119057

URL : https://hal.archives-ouvertes.fr/inserm-00363209

E. Perdiguero, P. Sousa-victor, V. Ruiz-bonilla, M. Jardi, C. Caelles et al., p38/MKP-1???regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair, The Journal of Cell Biology, vol.119, issue.2, pp.307-322, 2011.
DOI : 10.1084/jem.20051794

K. Sakamoto, E. Zarrinpashneh, G. R. Budas, A. C. Pouleur, A. Dutta et al., Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPK??2 but not AMPK??1, AJP: Endocrinology and Metabolism, vol.290, issue.5, pp.780-788, 2006.
DOI : 10.1152/ajpendo.00443.2005

U. Schleicher and C. Bogdan, Generation, Culture and Flow-Cytometric Characterization of Primary Mouse Macrophages, Methods Mol Biol, vol.531, pp.203-224, 2009.
DOI : 10.1007/978-1-59745-396-7_14

C. Sonnet, P. Lafuste, L. Arnold, M. Brigitte, F. Poron et al., Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems, Journal of Cell Science, vol.119, issue.12, pp.2497-2507, 2006.
DOI : 10.1242/jcs.02988

E. R. Stanley, Murine bone marrow-derived macrophages, Methods Mol. Biol, vol.75, pp.301-304, 1997.