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Abstract. This work addresses random geometrical uncertainties that are intrinsically 
observed in radiation therapy by means of a new deconvolution method combining a 
series expansion and a Butterworth filter. The method efficiently suppresses high 
frequency components by discarding the higher order terms of the series expansion 
and then filtering out deviations on the field edges. An additional approximation is 
made in order to set the fluence values outside the field to zero in the robust profiles. 
This method is compared to the deconvolution kernel method for a regular 2D 
fluence map, a real intensity-modulated radiation therapy (IMRT) field, and a 
prostate case. The results show that accuracy is improved while fulfilling clinical 
planning requirements. 

1. Introduction 
Sources of geometrical uncertainty that hamper exact delivery of a plan may include 

patient set-up variation (i.e., repositioning), organ motion and deformation, as well as 
machine-related errors (Stroom et al 2002). Systematic uncertainties can be reduced using 
image-guidance techniques and adaptive radiotherapy (Yan et al 1998, Hoogeman et al 2005, 
de la Zerda et al 2007, Peng et al 2011). Large organ movements, such as those observed in 
lung or prostate cancers (Suh et al 2009), can be compensated for using real-time motion 
tracking. However, random uncertainties cannot be fully eliminated (Fan and Nath 2010), due 
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to the finite response time and irregular motion patterns (Webb 2006).  
Conventional methods of adding a margin around the clinical target volume (CTV) so as 

to obtain a planning target volume (PTV) aim to find a sound compromise between 
maximizing target dose and minimizing dose to OAR, i.e., organ at risk (Baum et al 2006). 
Several methods have been proposed to account for geometric uncertainties in dose 
calculation, such as the “stochastic simulation method” (Lujan et al 1999), the “dose 
convolution method” (McCarter and Beckham 2000, Craig et al 2003), and the “fluence 
modification method” (Lu et al 2005). However, these methods inevitably expand CTV area. 
To significantly reduce the PTV margin, other authors (Lind et al 1993, Lof et al 1995, 
Gordon and Siebers 2008, Bortfeld et al 2008, Moore et al 2009, Fan and Nath 2010) have 
used the “robust beam profile” method, of which the most important feature is the higher 
fluence delivered on the field edges. 

In this work, we concentrated our attention on random geometrical uncertainties. Various 
deconvolution algorithms have been investigated in order to calculate robust beam profile 
with respect to small random geometrical uncertainties (Lind et al 1993, Fan and Nath 2010), 
and to remove the finite detector size effect in the measured profiles (Ulmer and Kaisel 2003, 
Ulmer 2010). To avoid infeasible or unreliable deconvolution results using the direct inverse 
filtering in the frequency domain, the series expansion method has been employed for 
first-order approximation of the deconvolution (Fang et al 1994, Garcia-Vicente et al 2000, 
Ulmer and Kaissl 2003, Fan and Nath 2010, Ulmer 2010). High-frequency components were 
suppressed through the summation of the first four terms of series expansion. The series 
expansion method can effectively suppress the oscillations in deconvolution results, but the 
effect is limited, and the convolved-back results inevitably contain numerous high frequency 
components, especially around the field edges. The method proposed by Fan and Nath (2010) 
is one kind of series expansion method that suppresses the fluence around the field edges. If 
the suppression is too large, however, it could lead to inferior intensity in the convolved-back 
profiles than in the nominal static fluence map around the field edges. Here we proposed a 
new deconvolution method based on series expansion and a Butterworth filter. In order to 
suppress the high-frequency components, we used only the first four terms of the series. By 
adjusting the parameters of the Butterworth filter according to the different probability 
density functions (PDF), we further suppressed high-frequency signal components and 
minimized differences between the static and convolved-back profiles, especially on the field 
edges. 

This paper is organized as follows: First, the methods and principles used in the design 
of the algorithm are described. Then, the new deconvolution approach is detailed (Section 2). 
The results are presented in Section 3, including a comparison to the deconvolution kernel 
method for a regular 2D fluence map and a real IMRT field. We also tested the proposed 
technique on a prostate case, the results of which are discussed in Section 4 prior to the 
conclusion. 

2. Methods 
Geometrical uncertainty results from many independent random causes (setup variation, 

motion, equipment precision limit, etc.), as discussed above. According to the central limit 
theorem, the distribution of this uncertainty should converge to the Gaussian distribution in a 
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multi-fraction treatment (Fan and Nath 2010). We used a single Gaussian distribution to 
describe random patient motion, as reported before on robust fluence (Unkelbach and Oelfke 
2005, Chu et al 2005, Moore et al 2009, Fan and Nath 2010): 
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Here, the standard derivation ! describes the random motion. Given a beam profile, the 
convolved-back profile Dm(x) is defined as: 
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where Dp(u) is the deconvolution profile. Our goal was to obtain the optimal deconvolution 
fluence map Dp(u) by minimizing the differences between the convolution-back fluence map 
Dm(x) and the nominal static fluence map. 

2.1. The beam profile deconvolution with the series expansion method 

With the Taylor serial expansion of Dp(u) at x, equation (2) can be written as: 
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The inverse operator A-1, defined by Ulmer and Kaissl (2003), leads us to formulate the 
deconvolution from Dm to Dp as: 
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Ulmer and Kaissl also derived an expression of the inverse PDF or deconvolution kernel 
p-1(!, x), which allows the deconvolution to be calculated in the following integral form: 
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In equation (5), the representation of p-1(!, x) can be expressed in the expansion of Hermite 
polynomials H2n: 
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with the coefficients cn=(–1)n/(2nn!). 

2.2. 1D beam profile deconvolution 

The Fourier transform of equation (4) can be expressed in the following form: 
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where w is the angular frequency. Following Ulmer and Kaissl (2003), the deconvolution 
kernel p-1(!, x) can also be written as: 

   1 2( , ) ( , )p x A p x! !" "= ,                              (8) 
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Using the Fourier transform to equation (5), we obtain 
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By comparing equation (7) with equation (10), a filter H(w) can be defined as: 
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Note that H(w) = 1 corresponds to an all-pass filter through the summation of polynomials to 
infinity. Due to the small contributions of the higher order terms, we only consider the first 
four terms in the summation of equation (12). In this context, H(w) is a filter that suppresses 
part of the high-frequency components. 

The convolved-back profiles for the deconvolution using the series expansion method in 
equation (4) and the deconvolution kernel method in equation (5) are shown in Figure 1, 
where the series expansion method is labeled as “Series” and the deconvolution kernel 
method is labeled as “DK”. We found that there are large deviations around the edges of 
fields between the convolved-back profiles and the static profile. However, the 
convolved-back profiles using the deconvolution kernel method are better than the results of 
the series expansion method, because the convolved-back profiles from the deconvolution 
kernel method are equal to the product of the results from the series expansion method and a 
low-pass filter. The frequency response of this low-pass filter is related to the truncation of 
the terms considered in equation (12). In order to further reduce the differences between the 
convolved-back profiles and the static profile, we filtered the results of the series expansion 
method with a classical filter whose frequency response could be more easily adjusted. To 
this end, we used a Butterworth filter with a frequency response of: 
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where w0 is the cutoff frequency and m is the number of reactive elements (poles) in the filter. 
In the series expansion (equation (7)) we just took the first four terms of the series--the 

low frequency components gathering most of the signals’ intensity. By adjusting the filter 
parameters, we could easily suppress the signals’ high-frequency components according to 
different PDF, and reduce differences between the static profile and the convolved-back 
profiles on the field edges, as shown in Figure 1, where the proposed method is labeled as 
“Filter.” 

To reduce the dose delivered outside the field, a further approximation was made by 
setting the values of deconvolution profiles outside the field to zero (Figure 2). This may 
reduce the intensities of convolved-back profiles on the field edges, as no dose is received 
outside the field. Thus, it is necessary to readjust the filter parameters in order to compensate 
for these lower intensities by the increased dose received on the field edges, as shown in 
Figure 2(b). The parameters of the filter were set by systematically exploring the parameter 
space for the minimal difference between the convolved-back profile and the nominal static 
profile. 

2.3. Extension to 2D fluence deconvolution 

The 2D extension can be derived following the same approach. For a 2D Gaussian PDF: 
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where the variables x and y are independent and separable; therefore, the extension of the 1D 
operator equation (3) to 2D is straightforward: 
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The deconvolution procedure is similar; the corresponding Fourier transform in each 
dimension is written as: 
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where u and v are the angular frequency. To reduce fluctuations within the field, the 
deconvolution outputs were filtered by a Butterworth filter in each dimension. We wrote the 
2D Butterworth filter in the frequency domain as follows: 

2 2
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where u0 and v0 are the cutoff frequencies, and m and k are the number of reactive elements 
(poles) of the filter in each dimension. 

In this work, the proposed method was compared to the improved deconvolution kernel 
method given by Fan and Nath (2010). That method achieves the deconvolution kernel by 
taking the first four Hermite polynomials in equation (6) in the Cartesian coordinate system 
and then effectuating an approximate conversion to the polar coordination system through a 
triangular transformation. Fan’s method suppresses the fluence around the field edges. If the 
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suppression is too large, however, it may lead to lower intensity in the convolved-back 
profiles than in the static fluence map around the field edges, as shown in Figure 3. 

3. Results 
We simulated two kinds of intensity-modulated 2D fluence maps, as shown in Figure 4(a) and 
Figure 5(a), and tested our method on a prostate case (Figure 7(a)). The patient PDF is the 
PDF modelling random geometric uncertainties of patient in 3D space. In this work, the PDF 
p(!x, !y, x, y) is a projection of the patient PDF to a plane orthogonal to the beam direction. 
Standard deviations of !x = 4 mm and !y = 3 mm were chosen for 2D PDF in x- and y- 
directions, respectively (in equation (14)). These standard deviations are the typical random 
geometrical uncertainty in practice for various sites (van Herk et al 2002, Moore et al 2009). 
To obtain a high cutoff frequency and a low order for the Butterworth filter, as discussed 
above, we used the parameters u0 = 0.9375, n = 1 and v0 = 1.25, k = 1 in equation (17), 
respectively, for these two standard deviations. Note that the values of cut-off frequencies u0 
and v0 were selected by an exhaustive search in order to minimize the difference between the 
convolved-back fluence map and the static fluence map. The same filter parameters were 
employed for different fluence maps with equal standard deviations. Three different methods 
(“DK”--the deconvolution kernel method (Ulmer and Kaissl 2003), “IDK”--the improved 
deconvolution kernel method (Fan and Nath 2010), and “Filter”--the proposed method) were 
compared, both for the two kinds of fluence maps and the prostate case. 

We calculated dose distribution as follows:  
(i) The deconvolution fluence maps were obtained via the deconvolution methods 

mentioned above;  
(ii) We sequenced the deconvolution fluence map into a series of deliverable leaf 

sequences, and then reconstructed these deliverable leaf sequences into a deliverable fluence 
map; 

(iii) The convolved-back fluence map was then calculated by convolving the deliverable 
fluence map and equation (14); 

(iv) Finally, the convolved-back fluence map was inserted into the software CERR 
(Deasy et al 2003), in order to calculate the dose distribution. 

3.1. Results for a regular 2D fluence map 

Figure 4 shows the application of the 2D deconvolution algorithms to the regular 2D 
fluence map. Ideally, the convolved-back fluence maps (Figure 4(b), (c) and (d)) should be 
the same as the nominal static one (Figure 4(a)). The differences between the convolved-back 
fluence maps and the static fluence map lie mainly around the field edges due to the nominal 
static fluence map’s steep fall-off. A detailed comparison of convolved-back fluence maps is 
also shown in a profile plot in Figure 4(e) for these three methods. 
 As shown in Figure 4, the convolved-back fluence map based on the proposed method 
exhibits fewer hot or cold spots than the results with the other two methods. Much improved 
agreement on fluence distributions around the field edges was achieved. The difference 
between the nominal static fluence map and the convolved-back fluence map was measured 
by the quadratic sum defined as: 
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where Fori is the nominal static fluence distributions and Fcon is the convolved-back fluence 
distributions. For this regular 2D fluence map, the quadratic sums of the difference between 
the nominal static map and the convolved-back fluence maps in the field were 0.7070, 0.4680, 
and 0.0577, for the deconvolution kernel method, the improved deconvolution kernel method, 
and the proposed method, respectively. 

3.2. Results for an IMRT field 

Figure 5 shows the application of the 2D deconvolution algorithms to the fluence map of 
an IMRT field. Compared to the nominal static fluence map (Figure 5(a)), the deconvolution 
fluence maps (Figure 5(b)-(d)) displayed a higher intensity on the field edges, especially in 
the lateral direction (x-direction), due to a larger random geometrical uncertainty and the 
steeper intensity edges. The convolved-back fluence maps and the corresponding differences 
to the nominal static fluence map are depicted in Figure 5(e)-(g) and 5(h)-(j). A profile 
comparison of the convolved-back fluence maps is shown in Figure 5(k). 

The deconvolution fluence map (Figure 5(d)) computed using the proposed method is 
less smooth than those calculated using the other two methods (Figure 5(b)-(c)). However, the 
convolved-back fluence map (Figure 5(g)) is closer to the static fluence map than the two 
corresponding convolved-back fluence maps (Figure 5(e)-(f)), especially on the field edges, 
as shown in Figure 5(h)-(j). For the deconvolution kernel method, the improved 
deconvolution kernel method, and the proposed method, the quadratic sums of the difference 
between the nominal static fluence map and the convolved-back fluence maps were 1.2014, 
1.0460, and 0.6884, respectively, in the field. As depicted in Figure 5, the proposed method 
achieved superior agreement on fluence distributions around the field edges. 
    We input the convolved-back fluence maps (Figure 5) into the software CERR (Deasy et 
al 2003) in order to calculate the dose distribution for a 6 MV photon beam at 10 cm depth of 
a water phantom, and the corresponding results are shown in Figure 6, where Figure 6(a)-(d) 
displays the dose distribution from the static fluence map in Figure 5(a) and from the 
convolved-back fluence maps in Figure 5(e)-(g). We used the gamma evaluation method 
(Low et al 1998) in order to analyze the dose distribution calculated from convolved-back 
fluence maps. The gamma analysis was applied with a dose difference of 3% and a distance to 
agreement of 3 mm. The 2D gamma analysis is shown in Figure 6(e)-(g), and the dose 
profiles are shown in Figure 6(h). We observed that the dose distributions calculated using the 
proposed method were closer to the dose distribution calculated from the nominal static 
fluence map than those calculated using the other two methods, especially around the field 
edges. 

3.3. Results for a prostate case 

Our method was tested on a prostate case with one 6 MV photon beam extracted from a 
5-beam IMRT plan. The gantry angle was 900, and the beam’s source-axis distance was 100 
cm. Figure 7 displays one slice of the CT scans, along with the static fluence map we used. 
The sensitive normal tissues considered here were the rectum wall and bladder wall (Figure 
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7(a)). We calculated dose distributions for both the nominal static fluence map and the 
fluence maps obtained using the margin expansion and deconvolution methods. The margin 
expansion method enlarged the static fluence map by 0.5 mm in each direction. Figure 8 
shows the 2D dose distributions at 17 cm under the surface in the beam direction for those 
fluence maps. We observed that high doses were partially delivered to the region outside the 
CTV when this approach was used (Figure 8(b)). When the deconvolution kernel method was 
applied, the delivered dose was high around the target edges (Figure 8(c)). The improved 
deconvolution kernel method (Figure 8(d)) and the proposed method (Figure 8(e)) showed a 
better dose modulation than the margin expansion method. Dose volume histograms (DVH) 
for the 2D dose distributions (Figure 8) are displayed in Figure 9. For the sensitive normal 
tissues, the proposed method offered better control for high doses delivered to normal tissue 
than the other three methods (Figure 9(a) and (b)). For the CTV, the dose distributions 
obtained using the proposed method were closer to the nominal static fluence map than those 
resulting from the other three methods (Figure 9(c)). We also analyzed the 2D dose 
distributions for the deconvolution method with gamma evaluation. A significant reduction of 
the difference in dose distributions was achieved with the proposed method, as shown in 
Figure 10.  

We used the method proposed by Engel (2005) in order to sequence the fluence map into 
a deliverable leaf sequence. In this work, the pixel size in fluence map was 0.5!0.5 cm2, and 
the minimum monitor unit (MU) was 5 MU for each segment. Thus, the resulting fluence 
maps were deliverable. With 10, 17, 14, and 16 segments, the fluence map monitor units 
equaled 85, 275, 175, and 210 for the margin expansion method, the deconvolution kernel 
method, the improved deconvolution kernel method, and the proposed method, respectively. 

4. Discussion and conclusion 
This study’s main assumption was that the organ motions of interest are random, with known 
probability distributions. Under this hypothesis, several works based on the deconvolution 
algorithm have been reported in the literature to derive a robust fluence map for IMRT. The 
advantages and disadvantages of this kind of approaches have been discussed by Fan and 
Nath. They showed that the deconvolution approach is more suitable for IMRT fluences with 
random geometrical uncertainties with a standard deviation within 2 and 4 mm, which means 
that the motion uncertainty is not very high. In this context, we have proposed a new 
deconvolution approach for robust fluence. 

Our proposed solution combines series expansion and filtering techniques. We now have 
access to optimal filters, the choice among which (Bessel, Chebyshev, elliptic, etc.) depends 
on several features, such as the behavior in pass-band, roll-off factor (this factor determines 
the vertical extent of the transition zone between the pass-band and stop-band), phase 
response, and execution speed. Bessel filters, for instance, transition more sharply between 
pass-band and stop-band, but do not provide the best phase response. The Butterworth filter 
selected here provides the flattest pass-band and a low roll-off factor. The main objective was, 
first, to show some of the benefits of the proposed combination. The use of other filters will 
be further explored in the future. 
    In addition, the proposed method offers the advantage that the whole formulation 
described operates in the frequency domain instead of the spatial domain. The Butterworth 
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filter can filter out the deviations around the field edges directly in the frequency domain. The 
parameters of the 2D Butterworth filter can be determined in each direction due to the 
independence and separability of arguments of PDF in the x- and y-directions. Their setting, 
varying with the PDF standard deviation, was designed to seek the minimum difference 
between the convolved-back fluence map and the static fluence map. It may be improved by 
replacing the exhaustive search with an optimization procedure. 

Comparisons with two other deconvolution approaches (Ulmer and Kaissl 2003, Fan and 
Nath 2010) show that the difference between the nominal static fluence map and the 
convolved-back fluence map, as measured by the quadratic sum, is significantly reduced with 
the proposed method. This advantage is somehow less pronounced when real IMRT data are 
processed. 

The convolved-back fluence map presents the actual fluence delivered to a patient when 
motion is accounted for. Our goal was to cause the target to receive the same fluence during 
motion as the nominal static fluence map; namely, to reduce the deviations between the static 
fluence map and convolution-back fluence map. Usually, there are large gradients in the static 
fluence map. The proposed method increases TNMU complexity (i.e., total number of 
monitor units) in the deconvolution fluence map, as defined by Engel (2005). For the prostate 
case reported in this work, these complexities were 83.62MU, 268.05MU, 179.26MU, and 
206.59MU for the margin expansion, deconvolution kernel, improved deconvolution kernel, 
and proposed method, respectively. 

To conclude, this new approach using both series expansion and a Butterworth filter was 
tested on two 2D fluence maps and a prostate case. It was shown that the Butterworth filter 
better suppressed high-frequency oscillations and reduced hot and cold spots on 
convolved-back fluence profiles. Better oscillation suppression could be obtained using the 
filter on different decomposed frequency bands as recently proposed by Yang et al (2012). In 
the flat area of the fluence map, our method’s accuracy was similar to that of the 
deconvolution kernel method. Near the edge of the fluence map, a clear advantage was 
observed. This approach can be easily implemented in the clinical setting and thus improve 
dose homogeneity. 
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Figure 1. The profile for a static target and the correspondent convolved-back profiles for deconvolution 

profiles. “Origin”—nominal static profile, “Series”—profile obtained with the series expansion 

method in equation (4), “DK”—profile obtained with the deconvolution kernel method, 

“Filter”—profile obtained with the proposed method. A Gaussian distribution of geometrical 

uncertainty with standard deviation ! = 3 mm is assumed 

Figure 3. The profiles for a static target and the corresponding convolved-back profiles. “Origin”— 

nominal static profile, “DK”—the deconvolution kernel method, “IDK”—the improved deconvolution 

kernel method, “Filter”—the proposed method. The dash-and-dot lines present the corresponding 

absolute difference with static profile and symbol prefix “D” for each method name. Gaussian 

distribution of geometrical uncertainty with standard deviation ! = 3 mm is assumed 

 

Figure 2. A rectangle-field profile: “Origin”—nominal profile for a static target, “Deconvolution”— the 

deconvolution profile, “Convolved-back”—the convolved-back profile. (a) The proposed method; (b) 
setting the value of the deconvolution profiles outside the field to zero  

(a) (b) 
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Figure 4. The fluence map for a static target and the corresponding convolved-back fluence maps from 

the deconvolution profiles. (a) The nominal static fluence map; the convolved-back fluence maps for: 

(b) the deconvolution kernel method, (c) the improved deconvolution kernel method, and (d) the 

proposed method; (e) the lateral profiles for these fluence maps 

(d) 

(e) 

(a) (b) (c) 

(a) 

(b) (c) (d) 
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(e) (f) (g) 

(k) 

Figure 5. The 2D deconvolution algorithms to the fluence map of a real IMRT field. (a) the nominal 

static fluence map; (b)-(d) the deconvolution fluence maps from corresponding methods (the 

deconvolution kernel method, the improved deconvolution kernel method, and the proposed method, 

respectively); (e)-(g) the corresponding convolved-back fluence maps, respectively; (h)-(j) the 

corresponding difference between the convolved-back fluence maps and the nominal static fluence 

map respectively; (k) the lateral profiles for convolved-back fluence maps 

(a) 

(h) (i) (j) 
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(b) (c) (d) 

(h) 

Figure 6. Dose distribution for a real IMRT field: (a) from the nominal static fluence map; (b)-(d) from 

the convolved-back fluence maps in figure 6(e)-(g) respectively; (e)-(g) the gamma analysis for the 

corresponding difference between figure 6 (a) and figure 6(b)-(d), respectively; (h) the lateral profiles 

for dose distribution 

Bladder wall  
 

Rectum wall 

 

CTV 

 

(a) 

 
(b) 

 

Figure 7. CT scans and fluence map. (a) The position of CTV and normal tissues in one 

CT slice of a patient; (b) the nominal static fluence map used in this case 

(e) (f) (g) 
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Figure 8.  Dose distributions in the prostate case using: (a) the nominal static fluence map; 

and fluence maps resulting from (b) margin expansion method; (c) the deconvolution 

kernel method; (d) the improved deconvolution kernel method; (e) the proposed method 
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(c) 

Figure 9. Dose-volume histograms of prostate case for the different methods with respect to 

the nominal static fluence map with: (a) bladder wall; (b) rectum wall; (c) CTV. “Margin” 

— margin expansion method 

Figure 10. The gamma analysis for dose distributions in the prostate case using fluence 

maps resulting from: (a) margin expansion method; (b) the deconvolution kernel method; 

(c) the improved deconvolution kernel method; (d) the proposed method 

(a) (b) 

(c) (d) 


