D. Altavilla, A. Saitta, S. Guarini, M. Galeano, G. Squadrito et al., Oxidative stress causes nuclear factor-??B activation in acute hypovolemic hemorrhagic shock, Free Radical Biology and Medicine, vol.30, issue.10, pp.1055-1066, 2001.
DOI : 10.1016/S0891-5849(01)00492-0

C. Hierholzer, J. Menezes, A. Ungeheuer, T. Billiar, D. Tweardy et al., A Nitric Oxide Scavenger Protects Against Pulmonary Inflammation Following Hemorrhagic Shock, Shock, vol.17, issue.2, pp.98-103, 2002.
DOI : 10.1097/00024382-200202000-00003

T. Hua and S. Moochhala, Role of Nitric Oxide in Hemorrhagic Shock-Induced Bacterial Translocation, Journal of Surgical Research, vol.93, issue.2, pp.247-256, 2000.
DOI : 10.1006/jsre.2000.5991

N. Smail, . Cr, P. Wang, W. Cioffi, K. Bland et al., Gut and Liver, Archives of Surgery, vol.133, issue.4, pp.399-405, 1998.
DOI : 10.1001/archsurg.133.4.399

S. Md, S. Moochhala, S. Yang, K. Lu, J. Anuar et al., The role of selective nitric oxide synthase inhibitor on nitric oxide and PGE2 levels in refractory hemorrhagic-shocked rats, Journal of Surgical Research, vol.123, issue.2, pp.206-214, 2005.
DOI : 10.1016/j.jss.2004.07.243

Y. Liu, M. Lu, L. Hu, P. Wong, G. Webb et al., Hydrogen Sulfide in the Mammalian Cardiovascular System, Antioxidants & Redox Signaling, vol.17, issue.1, pp.141-185, 2012.
DOI : 10.1089/ars.2011.4005

F. Wagner, P. Asfar, E. Calzia, P. Radermacher, and C. Szabo, Bench-to-bedside review: Hydrogen sulfide ??? the third gaseous transmitter: applications for critical care, Critical Care, vol.13, issue.3, p.213, 2009.
DOI : 10.1186/cc7700

M. Morrison, J. Blackwood, S. Lockett, A. Iwata, R. Winn et al., Surviving Blood Loss Using Hydrogen Sulfide, The Journal of Trauma: Injury, Infection, and Critical Care, vol.65, issue.1, pp.183-188, 2008.
DOI : 10.1097/TA.0b013e3181507579

F. Ganster, M. Burban, M. De-la-bourdonnaye, L. Fizanne, O. Douay et al., Effects of hydrogen sulfide on hemodynamics, inflammatory response and oxidative stress during resuscitated hemorrhagic shock in rats, Crit Care, vol.14, p.165, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00658921

C. Gao, D. Xu, C. Gao, Q. Ding, L. Yao et al., An Exogenous Hydrogen Sulphide Donor, NaHS, Inhibits the Nuclear Factor ^|^#954;B Inhibitor Kinase/Nuclear Factor ^|^#954;B Inhibitor/Nuclear Factor-^|^#954;B Signaling Pathway and Exerts Cardioprotective Effects in a Rat Hemorrhagic Shock Model, Biological and Pharmaceutical Bulletin, vol.35, issue.7, pp.1029-1034, 2012.
DOI : 10.1248/bpb.b110679

W. Chai, Y. Wang, J. Lin, X. Sun, L. Yao et al., Exogenous Hydrogen Sulfide Protects Against Traumatic Hemorrhagic Shock Via Attenuation of Oxidative Stress, Journal of Surgical Research, vol.176, issue.1, pp.210-219, 2012.
DOI : 10.1016/j.jss.2011.07.016

H. Bracht, A. Scheuerle, M. Groger, B. Hauser, J. Matallo et al., Effects of intravenous sulfide during resuscitated porcine hemorrhagic shock*, Critical Care Medicine, vol.40, issue.7, pp.2157-2167, 2012.
DOI : 10.1097/CCM.0b013e31824e6b30

T. Drabek, P. Kochanek, J. Stezoski, X. Wu, H. Bayir et al., Intravenous Hydrogen Sulfide Does Not Induce Hypothermia or Improve Survival from Hemorrhagic Shock in Pigs, Shock, vol.35, issue.1, pp.67-73, 2011.
DOI : 10.1097/SHK.0b013e3181e86f49

Y. Mok and P. Moore, Hydrogen sulphide is pro-inflammatory in haemorrhagic shock, Inflammation Research, vol.57, issue.11, pp.512-518, 2008.
DOI : 10.1007/s00011-008-7231-6

Y. Mok, M. Atan, Y. Ping, C. , Z. Jing et al., Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis, British Journal of Pharmacology, vol.20, issue.7, pp.881-889, 2004.
DOI : 10.1038/sj.bjp.0706014

. Issa, Critical Care, p.129, 2013.

M. Groeger, J. Matallo, O. Mccook, F. Wagner, U. Wachter et al., TEMPERATURE AND CELL-TYPE DEPENDENCY OF SULFIDE EFFECTS ON MITOCHONDRIAL RESPIRATION, Shock, vol.38, issue.4, pp.367-374, 2012.
DOI : 10.1097/SHK.0b013e3182651fe6

R. Wang, Signaling pathways for the vascular effects of hydrogen sulfide, Current Opinion in Nephrology and Hypertension, vol.20, issue.2, pp.107-112, 2011.
DOI : 10.1097/MNH.0b013e3283430651

M. Whiteman and P. Moore, Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability?, Journal of Cellular and Molecular Medicine, vol.121, issue.3, pp.488-507, 2009.
DOI : 10.1111/j.1582-4934.2009.00645.x

F. Wagner, A. Scheuerle, S. Weber, B. Stahl, O. Mccook et al., Cardiopulmonary, Histologic, and Inflammatory Effects of Intravenous Na2S After Blunt Chest Trauma-Induced Lung Contusion in Mice, The Journal of Trauma: Injury, Infection, and Critical Care, vol.71, issue.6, pp.1659-1667, 2011.
DOI : 10.1097/TA.0b013e318228842e

K. Wagner, M. Georgieff, P. Asfar, E. Calzia, M. Knoferl et al., Of mice and men (and sheep, swine etc.): the intriguing hemodynamic and metabolic effects of hydrogen sulfide (H 2 S) Crit Care, p.146, 2011.

B. Croker, K. Crozat, M. Berger, Y. Xia, S. Sovath et al., ATP-sensitive potassium channels mediate survival during infection in mammals and insects, Nature Genetics, vol.176, issue.12, pp.1453-1460, 2007.
DOI : 10.1073/pnas.95.25.14863

D. Annane, E. Bellissant, and J. Cavaillon, Septic shock, The Lancet, vol.365, issue.9453, pp.63-78, 2005.
DOI : 10.1016/S0140-6736(04)17667-8

URL : https://hal.archives-ouvertes.fr/hal-01414960

M. Singer, D. Santis, V. Vitale, D. Jeffcoate, and W. , Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation, The Lancet, vol.364, issue.9433, pp.545-548, 2004.
DOI : 10.1016/S0140-6736(04)16815-3

J. Surapisitchat, R. Hoefen, X. Pi, M. Yoshizumi, C. Yan et al., Fluid shear stress inhibits TNF-?? activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members, Proceedings of the National Academy of Sciences, vol.98, issue.11, pp.6476-6481, 2001.
DOI : 10.1073/pnas.101134098

P. Keegan, C. Wilder, and M. Platt, Tumor necrosis factor alpha stimulates cathepsin K and V activity via juxtacrine monocyte???endothelial cell signaling and JNK activation, Molecular and Cellular Biochemistry, vol.403, issue.1???2, pp.65-72, 2012.
DOI : 10.1007/s11010-012-1320-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390414

A. Van-de-louw and P. Haouzi, Oxygen deficit and H2S in hemorrhagic shock in rats, Critical Care, vol.16, issue.5, p.178, 2012.
DOI : 10.1016/j.resp.2011.07.003

E. Calzia, P. Radermacher, and K. Olson, Endogenous H 2 S in hemorrhagic shock: innocent bystander or central player? Crit Care, p.183, 2012.

E. Bos, H. Leuvenink, P. Snijder, N. Kloosterhuis, J. Hillebrands et al., Hydrogen Sulfide-Induced Hypometabolism Prevents Renal Ischemia/Reperfusion Injury, Journal of the American Society of Nephrology, vol.20, issue.9, pp.1901-1905, 2009.
DOI : 10.1681/ASN.2008121269

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736772

S. Minamishima, M. Bougaki, P. Sips, J. Yu, Y. Minamishima et al., Hydrogen Sulfide Improves Survival After Cardiac Arrest and Cardiopulmonary Resuscitation via a Nitric Oxide Synthase 3-Dependent Mechanism in Mice, Circulation, vol.120, issue.10, pp.888-896, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.833491

F. Wagner, K. Wagner, S. Weber, B. Stahl, M. Knoferl et al., Inflammatory Effects of Hypothermia and Inhaled H2S During Resuscitated, Hyperdynamic Murine Septic Shock, Shock, vol.35, issue.4, pp.396-402, 2011.
DOI : 10.1097/SHK.0b013e3181ffff0e