M. Mosesson, Fibrinogen and fibrin structure and functions, Journal of Thrombosis and Haemostasis, vol.96, issue.8, pp.1894-904, 2005.
DOI : 10.1046/j.1538-7836.2003.00063.x

E. Angles-cano, A. Balaton, L. Bonniec, B. Genot, E. Elion et al., Production of monoclonal antibodies to the high fibrinaffinity , tissue-type plasminogen activator of human plasma. Demonstration of its endothelial origin by immunolocalization, Blood, vol.66, pp.913-933, 1985.

Y. Suzuki, H. Yasui, T. Brzoska, H. Mogami, and T. Urano, Surface-retained tPA is essential for effective fibrinolysis on vascular endothelial cells, Blood, vol.118, issue.11, pp.3182-3187, 2011.
DOI : 10.1182/blood-2011-05-353912

V. Fleury, H. Lijnen, and E. Angles-cano, Mechanism of the enhanced intrinsic activity of single-chain urokinase-type plasminogen activator during ongoing fibrinolysis, J Biol Chem, vol.268, pp.18554-18563, 1993.

D. Rosso, M. Margheri, F. Serrati, S. Chilla, A. Laurenzana et al., The Urokinase Receptor System, A Key Regulator at the Intersection between Inflammation, Immunity, and Coagulation, Current Pharmaceutical Design, vol.17, issue.19, pp.1924-1967, 2011.
DOI : 10.2174/138161211796718189

L. Miles and E. Plow, Binding and activation of plasminogen on the platelet surface, J Biol Chem, vol.260, pp.4303-4314, 1985.

T. Podor, D. Singh, P. Chindemi, D. Foulon, R. Mckelvie et al., Vimentin Exposed on Activated Platelets and Platelet Microparticles Localizes Vitronectin and Plasminogen Activator Inhibitor Complexes on Their Surface, Journal of Biological Chemistry, vol.277, issue.9, pp.7529-7568, 2002.
DOI : 10.1074/jbc.M109675200

R. Lacroix, F. Sabatier, A. Mialhe, A. Basire, R. Pannell et al., Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro, Blood, vol.110, issue.7, pp.2432-2441, 2007.
DOI : 10.1182/blood-2007-02-069997

URL : https://hal.archives-ouvertes.fr/inserm-00160595

T. Dejouvencel, L. Doeuvre, R. Lacroix, L. Plawinski, F. Dignat-george et al., Fibrinolytic cross-talk: a new mechanism for plasmin formation, Blood, vol.115, issue.10, pp.2048-56, 2010.
DOI : 10.1182/blood-2009-06-228817

URL : https://hal.archives-ouvertes.fr/inserm-00439535

C. Cockell, J. Marshall, K. Dawson, S. Cederholm-williams, and C. Ponting, Evidence that the conformation of unliganded human plasminogen is maintained via an intramolecular interaction between the lysine-binding site of kringle 5 and the N-terminal peptide, Biochemical Journal, vol.333, issue.1, pp.99-105, 1998.
DOI : 10.1042/bj3330099

W. Mangel, B. Lin, and V. Ramakrishnan, Characterization of an extremely large, ligand-induced conformational change in plasminogen, Science, vol.248, issue.4951, pp.69-73, 1990.
DOI : 10.1126/science.2108500

Y. Xue, C. Bodin, and K. Olsson, Crystal structure of the native plasminogen reveals an activation-resistant compact conformation, Journal of Thrombosis and Haemostasis, vol.1, issue.Suppl. 3, pp.1385-96, 2012.
DOI : 10.1111/j.1538-7836.2012.04765.x

J. Schaller and S. Gerber, The plasmin???antiplasmin system: structural and functional aspects, Cellular and Molecular Life Sciences, vol.78, issue.5, pp.785-801, 2011.
DOI : 10.1007/s00018-010-0566-5

C. Longstaff, C. Thelwell, S. Williams, M. Silva, L. Szabo et al., The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: kinetic and microscopic studies, Blood, vol.117, issue.2, pp.661-669, 2011.
DOI : 10.1182/blood-2010-06-290338

E. Braat, M. Levi, R. Bos, F. Haverkate, M. Lassen et al., Inactivation of single-chain urokinase-type plasminogen activator by thrombin in human subjects, Journal of Laboratory and Clinical Medicine, vol.134, issue.2, pp.161-168, 1999.
DOI : 10.1016/S0022-2143(99)90121-X

H. Smith and C. Marshall, Regulation of cell signalling by uPAR, Nature Reviews Molecular Cell Biology, vol.14, issue.1, pp.23-36, 2010.
DOI : 10.1038/nrm2821

D. Rouy and E. Angles-cano, The mechanism of activation of plasminogen at the fibrin surface by tissue-type plasminogen activator in a plasma milieu in vitro

L. Miles, C. Dahlberg, J. Plescia, J. Felez, K. Kato et al., Role of cell-surface lysines in plasminogen binding to cells: identification of .alpha.-enolase as a candidate plasminogen receptor, Biochemistry, vol.30, issue.6, pp.1682-91, 1991.
DOI : 10.1021/bi00220a034

P. Madureira, A. Surette, K. Phipps, M. Taboski, V. Miller et al., The role of the annexin A2 heterotetramer (AIIt) in vascular fibrinolysis, Blood, 2011.

R. Das, T. Burke, and E. Plow, Histone H2B as a functionally important plasminogen receptor on macrophages, Blood, vol.110, issue.10, pp.3763-72, 2007.
DOI : 10.1182/blood-2007-03-079392

N. Andronicos, E. Chen, N. Baik, H. Bai, C. Parmer et al., Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation, Blood, vol.115, issue.7, pp.1319-1349, 2010.
DOI : 10.1182/blood-2008-11-188938

B. Ho-tin-noe, H. Enslen, L. Doeuvre, J. Corsi, H. Lijnen et al., Role of plasminogen activation in neuronal organization and survival, Molecular and Cellular Neuroscience, vol.42, issue.4, pp.288-95, 2009.
DOI : 10.1016/j.mcn.2009.08.001

URL : https://hal.archives-ouvertes.fr/inserm-00414232

J. Weisel, C. Nagaswami, B. Korsholm, L. Petersen, and E. Suenson, Interactions of Plasminogen with Polymerizing Fibrin and its Derivatives, Monitored with a Photoaffinity Cross-linker and Electron Microscopy, Journal of Molecular Biology, vol.235, issue.3, pp.1117-1152, 1994.
DOI : 10.1006/jmbi.1994.1061

V. Fleury and E. Angles-cano, Characterization of the binding of plasminogen to fibrin surfaces: The role of carboxy-terminal lysines, Biochemistry, vol.30, issue.30, pp.7630-7638, 1991.
DOI : 10.1021/bi00244a035

V. Ellis, N. Behrendt, and K. Dano, Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor, J Biol Chem, vol.266, pp.12752-12760, 1991.

B. Bennett, A. Croll, K. Ferguson, and N. Booth, Complexing of tissue plasminogen activator with PAI-1, alpha 2-macroglobulin, and C1-inhibitor: studies in patients with defibrination and a fibrinolytic state after electroshock or complicated labor, Blood, vol.75, pp.671-677, 1990.

M. Bouton, Y. Boulaftali, B. Richard, V. Arocas, and J. Michel, Jandrot-Perrus M. Emerging role of serpinE2

E. Miranda and D. Lomas, Neuroserpin: a serpin to think about, Cellular and Molecular Life Sciences, vol.63, issue.6, pp.709-731, 2006.
DOI : 10.1007/s00018-005-5077-4

Y. Boulaftali, B. Ho-tin-noe, A. Pena, S. Loyau, L. Venisse et al., Platelet Protease Nexin-1, a Serpin That Strongly Influences Fibrinolysis and ThrombolysisClinical Perspective, Circulation, vol.123, issue.12, pp.1326-1360, 2011.
DOI : 10.1161/CIRCULATIONAHA.110.000885

J. Lee, B. Cochran, S. Lobov, and M. Ranson, Forty Years Later and the Role of Plasminogen Activator Inhibitor Type 2/SERPINB2 Is Still an Enigma, Seminars in Thrombosis and Hemostasis, vol.37, issue.04, pp.395-407, 2011.
DOI : 10.1055/s-0031-1276589

B. Nordestgaard, M. Chapman, K. Ray, J. Boren, F. Andreotti et al., Lipoprotein(a) as a cardiovascular risk factor: current status, European Heart Journal, vol.31, issue.23, pp.2844-53, 2010.
DOI : 10.1093/eurheartj/ehq386

URL : https://hal.archives-ouvertes.fr/inserm-00578888

E. 33-angles-cano and G. Rojas, Apolipoprotein(a): Structure-Function Relationship at the Lysine-Binding Site and Plasminogen Activator Cleavage Site, Biological Chemistry, vol.383, issue.1, pp.93-102, 2002.
DOI : 10.1515/BC.2002.009

L. Hervio, V. Durlach, A. Girard-globa, and E. Angles-cano, Multiple Binding with Identical Linkage: A Mechanism That Explains the Effect of Lipoprotein(a) on Fibrinolysis, Biochemistry, vol.34, issue.41, pp.13353-13361, 1995.
DOI : 10.1021/bi00041a011

L. Mosnier and B. Bouma, Regulation of Fibrinolysis by Thrombin Activatable Fibrinolysis Inhibitor, an Unstable Carboxypeptidase B That Unites the Pathways of Coagulation and Fibrinolysis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.11, pp.2445-53, 2006.
DOI : 10.1161/01.ATV.0000244680.14653.9a

A. Guimaraes, N. Laurens, E. Weijers, P. Koolwijk, V. Van-hinsbergh et al., TAFI and Pancreatic Carboxypeptidase B Modulate In Vitro Capillary Tube Formation by Human Microvascular Endothelial Cells, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.10, pp.2157-62, 2007.
DOI : 10.1161/ATVBAHA.107.150144

J. Morser, E. Gabazza, T. Myles, and L. Leung, What has been learnt from the thrombin-activatable fibrinolysis inhibitordeficient mouse?, J Thromb Haemost, vol.8, pp.868-76, 2010.

E. Heylen, J. Willemse, and D. Hendriks, An update on the role of carboxypeptidase U (TAFIa) in fibrinolysis, Frontiers in Bioscience, vol.16, issue.1, pp.2427-50, 2011.
DOI : 10.2741/3864

K. Martin, J. Knorr, T. Breuer, R. Gertler, M. Macguill et al., Seizures After Open Heart Surgery: Comparison of ??-Aminocaproic Acid and Tranexamic Acid, Journal of Cardiothoracic and Vascular Anesthesia, vol.25, issue.1, pp.20-25, 2011.
DOI : 10.1053/j.jvca.2010.10.007

H. Shakur, I. Roberts, R. Bautista, J. Caballero, T. Coats et al., Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial, Lancet, vol.376, pp.23-32, 2010.

U. Pendurthi, M. Ngyuen, P. Andrade-gordon, L. Petersen, and L. Rao, Plasmin Induces Cyr61 Gene Expression in Fibroblasts Via Protease-Activated Receptor-1 and p44/42 Mitogen-Activated Protein Kinase-Dependent Signaling Pathway, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.9, pp.1421-1427, 2002.
DOI : 10.1161/01.ATV.0000030200.59331.3F

L. Doeuvre, L. Plawinski, D. Goux, D. Vivien, and E. Angles-cano, Plasmin on adherent cells: from microvesiculation to apoptosis, Biochemical Journal, vol.96, issue.2, pp.365-73, 2010.
DOI : 10.1016/S0092-8674(00)80483-3

URL : https://hal.archives-ouvertes.fr/inserm-00524993

O. Meilhac, B. Ho-tin-noe, X. Houard, P. M. Michel, and J. , Angles-Cano E. Pericellular plasmin induces smooth muscle cell anoikis, FASEB J, vol.17, pp.1301-1304, 2003.

P. Rossignol, E. Angles-cano, and H. Lijnen, Plasminogen activator inhibitor-1 impairs plasminogen activation-mediated vascular Ángles-Cano E y Plawinski L smooth muscle cell apoptosis, Thromb Haemost, vol.96, pp.665-70, 2006.

J. Horowitz, D. Rogers, R. Simon, T. Sisson, and V. Thannickal, Plasminogen Activation???Induced Pericellular Fibronectin Proteolysis Promotes Fibroblast Apoptosis, American Journal of Respiratory Cell and Molecular Biology, vol.38, issue.1, pp.78-87, 2008.
DOI : 10.1165/rcmb.2007-0174OC

P. Rossignol, B. Ho-tin-noe, R. Vranckx, M. Bouton, O. Meilhac et al., Protease Nexin-1 Inhibits Plasminogen Activation-induced Apoptosis of Adherent Cells, Journal of Biological Chemistry, vol.279, issue.11, pp.10346-56, 2004.
DOI : 10.1074/jbc.M310964200

L. Miles, M. Ginsberg, J. White, and E. Plow, Plasminogen interacts with human platelets through two distinct mechanisms., Journal of Clinical Investigation, vol.77, issue.6, pp.2001-2010, 1986.
DOI : 10.1172/JCI112529

B. Adelman, A. Rizk, and E. Hanners, Plasminogen interactions with platelets in plasma, Blood, vol.72, pp.1530-1535, 1988.

L. Doeuvre, L. Plawinski, F. Toti, and E. Angles-cano, Cell-derived microparticles: a new challenge in neuroscience, Journal of Neurochemistry, vol.62, issue.2, pp.457-68, 2009.
DOI : 10.1111/j.1471-4159.2009.06163.x

B. Gyorgy, T. Szabo, M. Pasztoi, Z. Pal, P. Misjak et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cellular and Molecular Life Sciences, vol.95, issue.3, pp.2667-88, 2011.
DOI : 10.1007/s00018-011-0689-3

O. Morel, L. Jesel, J. Freyssinet, and F. Toti, Cellular Mechanisms Underlying the Formation of Circulating Microparticles, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.1, pp.15-26, 2011.
DOI : 10.1161/ATVBAHA.109.200956

N. Amabile, P. Rautou, A. Tedgui, and C. Boulanger, Microparticles: Key Protagonists in Cardiovascular Disorders, Seminars in Thrombosis and Hemostasis, vol.36, issue.08, pp.907-923, 2010.
DOI : 10.1055/s-0030-1267044

M. Tushuizen, M. Diamant, A. Sturk, and R. Nieuwland, Cell-Derived Microparticles in the Pathogenesis of Cardiovascular Disease: Friend or Foe?, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.1, pp.4-9, 2011.
DOI : 10.1161/ATVBAHA.109.200998

S. Tual-chalot, D. Leonetti, R. Andriantsitohaina, and M. Martinez, Microvesicles: Intercellular Vectors of Biological Messages, Molecular Interventions, vol.11, issue.2, pp.88-94, 2011.
DOI : 10.1124/mi.11.2.5

J. Zwicker, C. Trenor, B. Furie, and B. Furie, Tissue Factor-Bearing Microparticles and Thrombus Formation, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.4, pp.728-761, 2011.
DOI : 10.1161/ATVBAHA.109.200964

R. Das and E. Plow, Phosphatidylserine as an anchor for plasminogen and its plasminogen receptor, Histone H2B, to the macrophage surface, Journal of Thrombosis and Haemostasis, vol.23, issue.2, pp.339-388, 2011.
DOI : 10.1111/j.1538-7836.2010.04132.x

R. Lacroix, L. Plawinski, S. Robert, L. Doeuvre, F. Sabatier et al., Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis, Haematologica, vol.97, issue.12, pp.1864-72, 2012.
DOI : 10.3324/haematol.2012.066167

URL : https://hal.archives-ouvertes.fr/inserm-00711679

V. Lishko, I. Yermolenko, and T. Ugarova, Plasminogen on the surfaces of fibrin clots prevents adhesion of leukocytes and platelets, Journal of Thrombosis and Haemostasis, vol.936, issue.4, pp.799-807, 2010.
DOI : 10.1111/j.1538-7836.2010.03778.x

K. Baeten, M. Richard, S. Kanse, N. Mutch, J. Degen et al., Activation of single-chain urokinase-type plasminogen activator by platelet-associated plasminogen: a mechanism for stimulation of fibrinolysis by platelets, Journal of Thrombosis and Haemostasis, vol.261, issue.6, pp.1313-1335, 2010.
DOI : 10.1111/j.1538-7836.2010.03813.x

X. Bai, J. Weitz, and P. Gross, Leukocyte urokinase plasminogen activator receptor and PSGL1 play a role in endogenous arterial fibrinolysis, Thrombosis and Haemostasis, vol.102, pp.1212-1220, 2009.
DOI : 10.1160/TH09-01-0038

K. Dass, A. Ahmad, A. Azmi, S. Sarkar, and F. Sarkar, Evolving role of uPA/uPAR system in human cancers, Cancer Treatment Reviews, vol.34, issue.2, pp.122-158, 2008.
DOI : 10.1016/j.ctrv.2007.10.005

A. Janowska-wieczorek, M. Wysoczynski, J. Kijowski, L. Marquez-curtis, B. Machalinski et al., Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer, International Journal of Cancer, vol.39, issue.5, pp.752-60, 2005.
DOI : 10.1002/ijc.20657

D. Kufrin, D. Eslin, K. Bdeir, J. Murciano, A. Kuo et al., Antithrombotic thrombocytes: ectopic expression of urokinase-type plasminogen activator in platelets, Blood, vol.102, issue.3, pp.926-959, 2003.
DOI : 10.1182/blood-2003-01-0054

M. Huisse, E. Lanoy, D. Tcheche, L. Feldman, A. Bezeaud et al., Prothrombotic markers and early spontaneous recanalization in st-segment elevation myocardial infarction, Thrombosis and Haemostasis, vol.98, pp.420-426, 2007.
DOI : 10.1160/TH06-11-0621

URL : https://hal.archives-ouvertes.fr/inserm-00160732

H. Swan, Acute myocardial infarction: a failure of timely, spontaneous thromholysis, Journal of the American College of Cardiology, vol.13, issue.6, pp.1435-1442, 1989.
DOI : 10.1016/0735-1097(89)90325-2

C. Hayward and G. Rivard, Quebec platelet disorder, Expert Review of Hematology, vol.4, issue.2, pp.137-178, 2011.
DOI : 10.1586/ehm.11.5