CRAC: an integrated approach to the analysis of RNA-seq reads.

Abstract : A large number of RNA-sequencing studies set out to predict mutations, splice junctions or fusion RNAs. We propose a method, CRAC, that integrates genomic locations and local coverage to enable such predictions to be made directly from RNA-seq read analysis. A k-mer profiling approach detects candidate mutations, indels and splice or chimeric junctions in each single read. CRAC increases precision compared with existing tools, reaching 99:5% for splice junctions, without losing sensitivity. Importantly, CRAC predictions improve with read length. In cancer libraries, CRAC recovered 74% of validated fusion RNAs and predicted novel recurrent chimeric junctions. CRAC is available at http://crac.gforge.inria.fr.
Type de document :
Article dans une revue
Genome Biology, BioMed Central, 2013, 14 (3), pp.R30. <10.1186/gb-2013-14-3-r30>
Liste complète des métadonnées

http://www.hal.inserm.fr/inserm-00850972
Contributeur : Ed. Bmc <>
Soumis le : samedi 10 août 2013 - 07:40:28
Dernière modification le : mercredi 20 janvier 2016 - 14:27:53

Identifiants

Collections

Citation

Nicolas Philippe, Mikaël Salson, Thérèse Commes, Eric Rivals. CRAC: an integrated approach to the analysis of RNA-seq reads.. Genome Biology, BioMed Central, 2013, 14 (3), pp.R30. <10.1186/gb-2013-14-3-r30>. <inserm-00850972>

Partager

Métriques

Consultations de
la notice

701

Téléchargements du document

1222