A. Aghemo and R. De-francesco, New horizons in hepatitis C antiviral therapy with direct-acting antivirals, Hepatology, vol.57, issue.Suppl S1, 2013.
DOI : 10.1002/hep.26371

H. B. El-serag, Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C virus infection, Gastroenterology, vol.140, p.11821188, 2011.

M. Bourliere, S. Gharakhanian, and L. Bengtsson, Telaprevir and peginterferon with or without ribavirin for chronic HCV infection, N. Engl. J. Med, vol.360, p.18391850, 2009.

L. Mcnair, J. Alam, and A. J. Muir, Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection, N. Engl. J. Med, vol.360, p.18271838, 2009.

F. Poordad, J. Mccone, . Jr, B. R. Bacon, S. Bruno et al., Boceprevir for Untreated Chronic HCV Genotype 1 Infection, New England Journal of Medicine, vol.364, issue.13, 2011.
DOI : 10.1056/NEJMoa1010494

URL : https://hal.archives-ouvertes.fr/hal-00867494

Z. D. Goodman, H. L. Sings, and N. Boparai, Boceprevir for previously treated chronic HCV genotype 1 infection, N. Engl. J. Med, vol.364, p.12071217, 2011.

E. J. Heathcote, S. Zeuzem, H. W. Reesink, and J. Garg, Telaprevir for previously treated chronic HCV infection, N. Engl. J. Med, vol.362, p.12921303, 2010.

H. P. Dienes, H. Popper, W. Arnold, and H. Lobeck, Histologic observations in human hepatitis non-A, non-B. Hepatology, 1982.

R. Thomssen, S. Bonk, C. Propfe, K. H. Heermann, H. G. Kochel et al., Association of hepatitis C virus in human sera with beta-lipoprotein, Med. Microbiol. Immunol, pp.181-293300, 1992.

R. Thomssen, S. Bonk, and A. Thiele, Density heterogeneities of hepatitis C virus in human sera due to the binding of beta-lipoproteins and immunoglobulins, Med. Microbiol. Immunol, vol.182, p.329334, 1993.

P. Andre, Preferential association of Hepatitis C virus with apolipoprotein B48-containing lipoproteins, J. Gen. Virol, vol.87, p.29832991, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00139590

M. J. Caslake, J. Mclauchlan, G. L. Toms, and R. D. Neely, Intravascular transfer contributes to postprandial increase in numbers of very-low-density hepatitis C virus particles, Gastroenterology, vol.139, p.17741783, 2010.

C. Scholtes, C. Ramiere, D. Rainteau, L. Perrin-cocon, C. Wolf et al., High plasma level of nucleocapsidfree envelope glycoprotein-positive lipoproteins in hepatitis C patients, Hepatology, vol.56, p.3948, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683361

J. Grove, S. Nielsen, J. Zhong, M. F. Bassendine, H. E. Drummer et al., Identification of a Residue in Hepatitis C Virus E2 Glycoprotein That Determines Scavenger Receptor BI and CD81 Receptor Dependency and Sensitivity to Neutralizing Antibodies, Journal of Virology, vol.82, issue.24, p.1202012029, 2008.
DOI : 10.1128/JVI.01569-08

J. Prentoe, T. B. Jensen, P. Meuleman, S. B. Serre, T. K. Scheel et al., Hypervariable Region 1 Differentially Impacts Viability of Hepatitis C Virus Strains of Genotypes 1 to 6 and Impairs Virus Neutralization, Journal of Virology, vol.85, issue.5, p.22242234, 2011.
DOI : 10.1128/JVI.01594-10

S. Fafi-kremer, I. Fofana, E. Soulier, P. Carolla, P. Meuleman et al., Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation, The Journal of Experimental Medicine, vol.119, issue.9, 2010.
DOI : 10.1073/pnas.0503596102

I. Fofana, S. Fafi-kremer, P. Carolla, C. Fauvelle, M. N. Zahid et al., Mutations That Alter Use of Hepatitis C Virus Cell Entry Factors Mediate Escape From Neutralizing Antibodies, Gastroenterology, vol.143, issue.1, p.223233, 2012.
DOI : 10.1053/j.gastro.2012.04.006

URL : https://hal.archives-ouvertes.fr/inserm-00701511

P. E. Bickel, J. T. Tansey, and M. A. Welte, PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, 1791.
DOI : 10.1016/j.bbalip.2009.04.002

D. L. Brasaemle, Thematic review series: Adipocyte Biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis, The Journal of Lipid Research, vol.48, issue.12, pp.48-25472559, 2007.
DOI : 10.1194/jlr.R700014-JLR200

G. M. Dallinga-thie, R. Franssen, H. L. Mooij, M. E. Visser, H. C. Hassing et al., The metabolism of triglyceride-rich lipoproteins revisited: New players, new insight, Atherosclerosis, vol.211, issue.1, p.18, 2010.
DOI : 10.1016/j.atherosclerosis.2009.12.027

K. J. Williams, Molecular processes that handleand mishandledietary lipids, J. Clin. Invest, vol.118, p.32473259, 2008.

P. Andre, F. Komurian-pradel, S. Deforges, M. Perret, J. L. Berland et al., Lotteau, V. Characterization of low-and very-low-density hepatitis C virus RNA-containing particles, J. Virol, pp.76-69196928, 2002.

S. U. Nielsen, M. F. Bassendine, A. D. Burt, C. Martin, W. Pumeechockchai et al., Association between Hepatitis C Virus and Very-Low-Density Lipoprotein (VLDL)/LDL Analyzed in Iodixanol Density Gradients, Journal of Virology, vol.80, issue.5, p.24182428, 2006.
DOI : 10.1128/JVI.80.5.2418-2428.2006

L. Rubbia-brandt, R. Quadri, K. Abid, E. Giostra, P. J. Male et al., Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3, Journal of Hepatology, vol.33, issue.1, p.106115, 2000.
DOI : 10.1016/S0168-8278(00)80166-X

L. Serfaty, T. Andreani, P. Giral, N. Carbonell, O. Chazouilleres et al., Hepatitis C virus induced hypobetalipoproteinemia: A possible mechanism for steatosis in chronic hepatitis C, J. Hepatol, vol.34, p.428434, 2001.

T. Fujino, M. Nakamuta, R. Yada, Y. Aoyagi, K. Yasutake et al., Expression profile of lipid metabolism-associated genes in hepatitis C virus-infected human liver, Hepatology Research, vol.100, issue.s2, pp.40-923929, 2010.
DOI : 10.1111/j.1872-034X.2010.00700.x

M. Nakamuta, R. Yada, T. Fujino, M. Yada, N. Higuchi et al., Changes in the expression of cholesterol metabolism-associated genes in HCV-infected liver: A novel target for therapy?, Int. J. Mol. Med, vol.24, p.825828, 2009.

A. I. Su, J. P. Pezacki, L. Wodicka, A. D. Brideau, L. Supekova et al., Genomic analysis of the host response to hepatitis C virus infection, Proc. Natl. Acad. Sci, p.1566915674, 2002.

M. L. Chang, C. T. Yeh, J. C. Chen, C. C. Huang, S. M. Lin et al., Altered expression patterns of lipid metabolism genes in an animal model of HCV core-related, nonobese, modest hepatic steatosis, BMC Genomics, vol.9, issue.1, p.109, 2008.
DOI : 10.1186/1471-2164-9-109

H. Lerat, H. L. Kammoun, I. Hainault, E. Merour, M. R. Higgs et al., Hepatitis C Virus Proteins Induce Lipogenesis and Defective Triglyceride Secretion in Transgenic Mice, Journal of Biological Chemistry, vol.284, issue.48, p.3346633474, 2009.
DOI : 10.1074/jbc.M109.019810

URL : https://hal.archives-ouvertes.fr/inserm-00441475

J. K. Oem, C. Jackel-cram, Y. P. Li, Y. Zhou, J. Zhong et al., Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2, Journal of General Virology, vol.89, issue.5, p.12251230, 2008.
DOI : 10.1099/vir.0.83491-0

C. Y. Park, H. J. Jun, T. Wakita, J. H. Cheong, and S. B. Hwang, Hepatitis C Virus Nonstructural 4B Protein Modulates Sterol Regulatory Element-binding Protein Signaling via the AKT Pathway, Journal of Biological Chemistry, vol.284, issue.14, p.92379246, 2009.
DOI : 10.1074/jbc.M808773200

G. Waris, D. J. Felmlee, F. Negro, and A. Siddiqui, Hepatitis C Virus Induces Proteolytic Cleavage of Sterol Regulatory Element Binding Proteins and Stimulates Their Phosphorylation via Oxidative Stress, Journal of Virology, vol.81, issue.15, pp.81-81228130, 2007.
DOI : 10.1128/JVI.00125-07

S. Mcpherson, J. R. Jonsson, H. D. Barrie, P. O-'rourke, A. D. Clouston et al., Investigation of the role of SREBP-1c in the pathogenesis of HCV-related steatosis, Journal of Hepatology, vol.49, issue.6, pp.49-10461054, 2008.
DOI : 10.1016/j.jhep.2008.06.022

J. E. Lambert, V. G. Bain, E. A. Ryan, A. B. Thomson, and M. T. Clandinin, Elevated lipogenesis and diminished cholesterol synthesis in patients with hepatitis C viral infection compared to healthy humans, Hepatology, vol.10, issue.5, p.16971704, 2012.
DOI : 10.1002/hep.25990

P. Sharma, V. Balan, J. Hernandez, M. Rosati, J. Williams et al., Hepatic Steatosis in Hepatitis C Virus Genotype 3 Infection: Does It Correlate with Body Mass Index, Fibrosis, and HCV Risk Factors?, Digestive Diseases and Sciences, vol.49, issue.1, pp.49-2529, 2004.
DOI : 10.1023/B:DDAS.0000011597.92851.56

K. C. Thomopoulos, V. Arvaniti, A. C. Tsamantas, D. Dimitropoulou, C. A. Gogos et al., Prevalence of liver steatosis in patients with chronic hepatitis B: a study of associated factors and of relationship with fibrosis, European Journal of Gastroenterology & Hepatology, vol.18, issue.3, p.233237, 2006.
DOI : 10.1097/00042737-200603000-00002

L. E. Adinolfi, M. Gambardella, A. Andreana, M. F. Tripodi, R. Utili et al., Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity, Hepatology, vol.33, issue.6, p.13581364, 2001.
DOI : 10.1053/jhep.2001.24432

L. E. Adinolfi, R. Utili, A. Andreana, M. F. Tripodi, M. Marracino et al., Serum HCV RNA levels correlate with histological liver damage and concur with steatosis in progression of chronic hepatitis C, Dig. Dis. Sci, pp.46-16771683, 2001.

H. Hofer, H. C. Bankl, F. Wrba, P. Steindl-munda, M. Peck-radosavljevic et al., Hepatocellular fat accumulation and low serum cholesterol in patients infected with HCV-3a, The American Journal of Gastroenterology, vol.28, issue.11, pp.97-28802885, 2002.
DOI : 10.1016/S0140-6736(95)91685-7

D. Marzouk, J. Sass, I. Bakr, M. Abdel-hamid, C. Rekacewicz et al., Metabolic and cardiovascular risk profiles and hepatitis C virus infection in rural Egypt, Gut, vol.56, issue.8, 2007.
DOI : 10.1136/gut.2006.091983

P. J. Clark, A. J. Thompson, D. M. Vock, L. E. Kratz, A. A. Tolun et al., Hepatitis C virus selectively perturbs the distal cholesterol synthesis pathway in a genotype-specific manner, Hepatology, vol.100, issue.1, p.4956, 2012.
DOI : 10.1002/hep.25631

A. M. Domitrovich, D. J. Felmlee, and A. Siddiqui, Hepatitis C Virus Nonstructural Proteins Inhibit Apolipoprotein B100 Secretion, Journal of Biological Chemistry, vol.280, issue.48, p.3980239808, 2005.
DOI : 10.1074/jbc.M510391200

S. Mirandola, S. Realdon, J. Iqbal, M. Gerotto, F. Dal-pero et al., Liver Microsomal Triglyceride Transfer Protein Is Involved in Hepatitis C Liver Steatosis, Gastroenterology, vol.130, issue.6, p.16611669, 2006.
DOI : 10.1053/j.gastro.2006.02.035

C. Mancone, C. Montaldo, L. Santangelo, C. Di-giacomo, V. Costa et al., Ferritin Heavy Chain Is the Host Factor Responsible for HCV-Induced Inhibition of apoB-100 Production and Is Required for Efficient Viral Infection, Journal of Proteome Research, vol.11, issue.5, p.27862797, 2012.
DOI : 10.1021/pr201128s

URL : https://hal.archives-ouvertes.fr/pasteur-00957464

M. Enjoji, M. Kohjima, K. Kotoh, and M. Nakamuta, Metabolic Disorders and Steatosis in Patients with Chronic Hepatitis C: Metabolic Strategies for Antiviral Treatments, International Journal of Hepatology, vol.6, issue.5, 2012.
DOI : 10.1159/000322219

C. Y. Dai, W. L. Chuang, C. K. Ho, M. Y. Hsieh, J. F. Huang et al., Associations between hepatitis C viremia and low serum triglyceride and cholesterol levels: A community-based study, Journal of Hepatology, vol.49, issue.1, pp.49-916, 2008.
DOI : 10.1016/j.jhep.2008.03.016

M. Nishimura, H. Yamamoto, T. Yoshida, M. Seimiya, Y. Sawabe et al., Decreases in the Serum VLDL-TG/Non-VLDL-TG Ratio from Early Stages of Chronic Hepatitis C: Alterations in TG-Rich Lipoprotein Levels, PLoS ONE, vol.35, issue.2, 2011.
DOI : 10.1371/journal.pone.0017309.t001

J. Krijnse-locker and R. Bartenschlager, Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome, J. Biol. Chem, vol.286, p.30183032, 2011.

K. Ishii, T. Suzuki, and T. Wakita, Production and characterization of HCV particles from serum-free culture, Vaccine, vol.29, p.48214828, 2011.

W. Cun, J. Jiang, and G. Luo, The C-terminal alpha-helix domain of apolipoprotein E is required for interaction with nonstructural protein 5A and assembly of hepatitis C virus, J. Virol, vol.84, p.1153211541, 2010.

D. Costa, D. Turek, M. Felmlee, D. J. Girardi, E. Pfeffer et al., Reconstitution of the Entire Hepatitis C Virus Life Cycle in Nonhepatic Cells, Journal of Virology, vol.86, issue.21, p.1191911925, 2012.
DOI : 10.1128/JVI.01066-12

URL : https://hal.archives-ouvertes.fr/inserm-00734834

T. Hishiki, Y. Shimizu, R. Tobita, K. Sugiyama, K. Ogawa et al., Infectivity of Hepatitis C Virus Is Influenced by Association with Apolipoprotein E Isoforms, Journal of Virology, vol.84, issue.22, p.1204812057, 2010.
DOI : 10.1128/JVI.01063-10

G. Long, M. S. Hiet, M. P. Windisch, J. Y. Lee, V. Lohmann et al., Mouse Hepatic Cells Support Assembly of Infectious Hepatitis C Virus Particles, Gastroenterology, vol.141, issue.3, p.10571066, 2011.
DOI : 10.1053/j.gastro.2011.06.010

D. A. Price, M. F. Bassendine, S. M. Norris, C. Golding, G. L. Toms et al., Apolipoprotein epsilon3 allele is associated with persistent hepatitis C virus infection, Gut, vol.55, 2006.

I. Kuhlmann, A. M. Minihane, P. Huebbe, A. Nebel, and G. Rimbach, Apolipoprotein E genotype and hepatitis C, HIV and herpes simplex disease risk: a literature review, Lipids in Health and Disease, vol.9, issue.1, p.8, 2010.
DOI : 10.1186/1476-511X-9-8

M. A. Wozniak, R. F. Itzhaki, E. B. Faragher, M. W. James, S. D. Ryder et al., Apolipoprotein E-epsilon 4 protects against severe liver disease caused by hepatitis C virus, Hepatology, vol.36, p.456463, 2002.

H. Li, Z. Liu, Q. Han, Y. Li, and J. Chen, Association of genetic polymorphism of low-density lipoprotein receptor with chronic viral hepatitis C infection in Han Chinese, Journal of Medical Virology, vol.47, issue.10, pp.78-12891295, 2006.
DOI : 10.1002/jmv.20693

M. Napolitano, A. Giuliani, T. Alonzi, C. Mancone, G. Offizi et al., Very low density lipoprotein and low density lipoprotein isolated from patients with hepatitis C infection induce altered cellular lipid metabolism, Journal of Medical Virology, vol.39, issue.3, pp.79-254258, 2007.
DOI : 10.1002/jmv.20793

C. Mancone, C. Steindler, L. Santangelo, G. Simonte, C. Vlassi et al., Hepatitis C virus production requires apolipoprotein A-I and affects its association with nascent low-density lipoproteins, Gut, vol.60, issue.3, p.378386, 2011.
DOI : 10.1136/gut.2010.211292

URL : https://hal.archives-ouvertes.fr/pasteur-00980167

E. Kim, K. Li, C. Lieu, S. Tong, S. Kawai et al., Expression of apolipoprotein C-IV is regulated by Ku antigen/peroxisome proliferator-activated receptor gamma complex and correlates with liver steatosis, J. Hepatol, pp.49-787798, 2008.

J. Rowell, A. J. Thompson, J. R. Guyton, X. Q. Lao, J. G. Mchutchison et al., Serum apolipoprotein C-III is independently associated with chronic hepatitis C infection and advanced fibrosis, Hepatology International, vol.118, issue.2, p.475481
DOI : 10.1007/s12072-011-9291-x

J. Albrecht, Effect of treatment with peginterferon or interferon alfa-2b and ribavirin on steatosis in patients infected with hepatitis C, Hepatology, vol.38, p.7585, 2003.

J. Westin, M. Lagging, A. P. Dhillon, G. Norkrans, A. I. Romero et al., Impact of hepatic steatosis on viral kinetics and treatment outcome during antiviral treatment of chronic HCV infection, Journal of Viral Hepatitis, vol.28, issue.3, p.2935, 2007.
DOI : 10.1136/gut.51.1.89

C. Sarrazin, J. Harvey, C. Brass, and J. Albrecht, Peginterferon alfa-2b plus ribavirin for treatment of chronic hepatitis C in previously untreated patients infected with HCV genotypes 2 or 3, J. Hepatol, pp.40-993999, 2004.

K. E. Corey, E. Kane, C. Munroe, L. L. Barlow, H. Zheng et al., Hepatitis C virus infection and its clearance alter circulating lipids: Implications for long-term follow-up, Hepatology, vol.232, issue.4, p.10301037, 2009.
DOI : 10.1002/hep.23219

K. Gopal, T. C. Johnson, S. Gopal, A. Walfish, C. T. Bang et al., Correlation between beta-lipoprotein levels and outcome of hepatitis C treatment, Hepatology, vol.98, issue.2, p.335340, 2006.
DOI : 10.1002/hep.21261

D. Ramcharran, A. S. Wahed, H. S. Conjeevaram, R. W. Evans, T. Wang et al., Associations between serum lipids and hepatitis C antiviral treatment efficacy, Hepatology, vol.45, issue.3, p.854863, 2010.
DOI : 10.1002/hep.23796

L. E. Adinolfi, L. Restivo, R. Zampino, B. Guerrera, A. Lonardo et al., Florio, A. Chronic HCV infection is a risk of atherosclerosis. Role of HCV and HCV-related steatosis, Atherosclerosis, vol.221, p.496502, 2012.

N. Akuta, F. Suzuki, Y. Kawamura, H. Yatsuji, H. Sezaki et al., Predictive factors of early and sustained responses to peginterferon plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus genotype 1b: Amino acid substitutions in the core region and low-density lipoprotein cholesterol levels, Journal of Hepatology, vol.46, issue.3, pp.46-403410, 2007.
DOI : 10.1016/j.jhep.2006.09.019

D. A. Sheridan, S. H. Bridge, D. J. Felmlee, M. M. Crossey, H. C. Thomas et al., Apolipoprotein-E and hepatitis C lipoviral particles in genotype 1 infection: Evidence for an association with interferon sensitivity, Journal of Hepatology, vol.57, issue.1, p.3238, 2012.
DOI : 10.1016/j.jhep.2012.02.017

S. H. Bridge, D. A. Sheridan, D. J. Felmlee, S. U. Nielsen, H. C. Thomas et al., Insulin resistance and low-density apolipoprotein B-associated lipoviral particles in hepatitis C virus genotype 1 infection, Gut, vol.60, issue.5, p.680687, 2011.
DOI : 10.1136/gut.2010.222133

J. H. Li, X. Q. Lao, H. L. Tillmann, J. Rowell, K. Patel et al., Interferon-lambda genotype and low serum low-density lipoprotein cholesterol levels in patients with chronic hepatitis C infection, Hepatology, vol.100, issue.Suppl., 2010.
DOI : 10.1002/hep.23592

C. M. Fernandez-rodriguez, R. Sola, J. Garcia-samaniego, J. M. Herrerias, and M. De-la-mata, Treatment of insulin resistance with metformin in naive genotype 1 chronic hepatitis C patients receiving peginterferon alfa-2a plus ribavirin, Hepatology, vol.50, p.17021708, 2009.

M. Kohjima, M. Enjoji, T. Yoshimoto, R. Yada, T. Fujino et al., Add-on therapy of pitavastatin and eicosapentaenoic acid improves outcome of peginterferon plus ribavirin treatment for chronic hepatitis C, Journal of Medical Virology, vol.4, issue.2, p.250260, 2013.
DOI : 10.1002/jmv.23464

M. Chojkier, H. Elkhayat, D. Sabry, M. Donohue, and M. Buck, Pioglitazone Decreases Hepatitis C Viral Load in Overweight, Treatment Na??ve, Genotype 4 Infected-Patients: A Pilot Study, PLoS ONE, vol.461, issue.6, 2012.
DOI : 10.1371/journal.pone.0031516.s002

K. Koury, V. S. Goteti, and S. Noviello, Serum cholesterol and statin use predict virological response to peginterferon and ribavirin therapy, Hepatology, vol.52, p.864874, 2010.

M. Atsukawa, A. Tsubota, C. Kondo, N. Itokawa, Y. Narahara et al., Combination of fluvastatin with pegylated interferon/ribavirin therapy reduces viral relapse in chronic hepatitis C infected with HCV genotype 1b, Journal of Gastroenterology and Hepatology, vol.465, issue.1, p.5156, 2013.
DOI : 10.1111/j.1440-1746.2012.07267.x

G. A. Rao and P. K. Pandya, Statin Therapy Improves Sustained Virologic Response Among Diabetic Patients With Chronic Hepatitis C, Gastroenterology, vol.140, issue.1, p.144152, 2011.
DOI : 10.1053/j.gastro.2010.08.055

J. Ye, C. Wang, R. Sumpter, . Jr, M. S. Brown et al., Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation, Proc. Natl. Acad. Sci. USA 2003, p.1586515870
DOI : 10.1073/pnas.2237238100

T. Bader, J. Fazili, M. Madhoun, C. Aston, D. Hughes et al., Fluvastatin Inhibits Hepatitis C Replication in Humans, The American Journal of Gastroenterology, vol.30, issue.2, p.13831389, 2008.
DOI : 10.1002/hep.21554

K. A. Forde, C. Law, R. O-'flynn, and D. E. Kaplan, Do statins reduce hepatitis C RNA titers during routine clinical use?, World Journal of Gastroenterology, vol.15, issue.40, p.50205027, 2009.
DOI : 10.3748/wjg.15.5020

S. Antinori, Does fluvastatin favour HCV replication in vivo? A pilot study on HIV-HCV coinfected patients, J. Viral. Hepatitis, vol.16, p.479484, 2009.

O. Leary, J. G. Chan, J. L. Mcmahon, C. M. Chung, and R. T. , Atorvastatin does not exhibit antiviral activity against HCV at conventional doses: A pilot clinical trial, Hepatology, vol.45, p.895898, 2007.

L. M. Nyberg, W. M. Lee, R. H. Ghalib, and E. R. Schiff, Peginterferon alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection, N. Engl. J. Med, pp.361-580593, 2009.

L. Milazzo, I. Caramma, C. Mazzali, M. Cesari, M. Olivetti et al., Fluvastatin as an adjuvant to pegylated interferon and ribavirin in HIV/hepatitis C virus genotype 1 co-infected patients: an open-label randomized controlled study, Journal of Antimicrobial Chemotherapy, vol.65, issue.4, pp.65-735740, 2010.
DOI : 10.1093/jac/dkq002

H. Sezaki, F. Suzuki, N. Akuta, H. Yatsuji, T. Hosaka et al., An Open Pilot Study Exploring the Efficacy of Fluvastatin, Pegylated Interferon and Ribavirin in Patients with Hepatitis C Virus Genotype 1b in High Viral Loads, Intervirology, vol.52, issue.1, p.4348, 2009.
DOI : 10.1159/000213504

F. J. Raal, R. D. Santos, D. J. Blom, A. D. Marais, M. J. Charng et al., Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial, The Lancet, vol.375, issue.9719, p.9981006, 2010.
DOI : 10.1016/S0140-6736(10)60284-X

C. Esau, S. Davis, S. F. Murray, X. X. Yu, S. K. Pandey et al., miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting, Cell Metabolism, vol.3, issue.2, p.8798, 2006.
DOI : 10.1016/j.cmet.2006.01.005

R. E. Lanford, E. S. Hildebrandt-eriksen, A. Petri, R. Persson, M. Lindow et al., Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection, Science, vol.327, issue.5962, 2010.
DOI : 10.1126/science.1178178

J. Goldwasser, P. Y. Cohen, W. Lin, D. Kitsberg, P. Balaguer et al., Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR-mediated mechanism, Journal of Hepatology, vol.55, issue.5, pp.55-963971, 2011.
DOI : 10.1016/j.jhep.2011.02.011

Y. Nahmias, J. Goldwasser, M. Casali, D. Van-poll, T. Wakita et al., Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin, Hepatology, vol.7, issue.pt 9, pp.47-14371445, 2008.
DOI : 10.1002/hep.22197

S. Ciesek, T. Von-hahn, C. C. Colpitts, L. M. Schang, M. Friesland et al., The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry, Hepatology, vol.76, issue.6, 2011.
DOI : 10.1002/hep.24610

N. Calland, A. Albecka, S. Belouzard, C. Wychowski, G. Duverlie et al., (???)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry, Hepatology, vol.436, issue.Suppl 1, p.720729, 2012.
DOI : 10.1002/hep.24803

Y. T. Lin, Y. H. Wu, C. K. Tseng, C. K. Lin, W. C. Chen et al., Green Tea Phenolic Epicatechins Inhibit Hepatitis C Virus Replication via Cycloxygenase-2 and Attenuate Virus-Induced Inflammation, PLoS ONE, vol.55, issue.1, p.54466, 2013.
DOI : 10.1371/journal.pone.0054466.s001

M. Kaito, S. Watanabe, K. Tsukiyama-kohara, K. Yamaguchi, Y. Kobayashi et al., Hepatitis C virus particle detected by immunoelectron microscopic study, Journal of General Virology, vol.75, issue.7, pp.75-17551760, 1994.
DOI : 10.1099/0022-1317-75-7-1755

D. Bradley, K. Mccaustland, K. Krawczynski, J. Spelbring, C. Humphrey et al., Hepatitis C virus: Buoyant density if the factor VIII-derived isolate in sucrose, Journal of Medical Virology, vol.65, issue.3, 1991.
DOI : 10.1002/jmv.1890340315

D. W. Bradley, K. A. Mccaustland, E. H. Cook, C. A. Schable, J. W. Ebert et al., Posttransfusion non-A, non-B hepatitis in chimpanzees. Physicochemical evidence that the tubule-forming agent is a small, enveloped virus, Gastroenterology, vol.88, p.773779, 1985.

L. F. He, D. Alling, T. Popkin, M. Shapiro, H. J. Alter et al., Determining the Size of Non-A, Non-B Hepatitis Virus by Filtration, Journal of Infectious Diseases, vol.156, issue.4, p.636640, 1987.
DOI : 10.1093/infdis/156.4.636

T. Kanto, N. Hayashi, T. Takehara, H. Hagiwara, E. Mita et al., Density analysis of hepatitis C virus particle population in the circulation of infected hosts: implications for virus neutralization or persistence, Journal of Hepatology, vol.22, issue.4, p.440448, 1995.
DOI : 10.1016/0168-8278(95)80107-3

W. Pumeechockchai, D. Bevitt, K. Agarwal, T. Petropoulou, B. C. Langer et al., Hepatitis C virus particles of different density in the blood of chronically infected immunocompetent and immunodeficient patients: Implications for virus clearance by antibody, Journal of Medical Virology, vol.25, issue.3, pp.68-335342, 2002.
DOI : 10.1002/jmv.10208

S. U. Nielsen, M. F. Bassendine, C. Martin, D. Lowther, P. J. Purcell et al., Characterization of hepatitis C RNA-containing particles from human liver by density and size, Journal of General Virology, vol.89, issue.10, p.25072517, 2008.
DOI : 10.1099/vir.0.2008/000083-0

M. Hijikata, Y. K. Shimizu, H. Kato, A. Iwamoto, J. W. Shih et al., Equilibrium centrifugation studies of hepatitis C virus: Evidence for circulating immune complexes, J. Virol, vol.67, 1993.

B. D. Lindenbach, M. J. Evans, A. J. Syder, B. Wolk, T. L. Tellinghuisen et al., Complete Replication of Hepatitis C Virus in Cell Culture, Science, vol.309, issue.5734, p.623626, 2005.
DOI : 10.1126/science.1114016

T. Wakita, T. Pietschmann, T. Kato, T. Date, M. Miyamoto et al., Production of infectious hepatitis C virus in tissue culture from a cloned viral genome, Nature Medicine, vol.37, issue.7, p.791796, 2005.
DOI : 10.1002/jmv.10297

S. L. Uprichard, T. Wakita, and F. Chisari, Robust hepatitis C virus infection in vitro, Proc. Natl. Acad. Sci. USA 2005, p.92949299

P. Gastaminza, S. B. Kapadia, and F. Chisari, Differential Biophysical Properties of Infectious Intracellular and Secreted Hepatitis C Virus Particles, Journal of Virology, vol.80, issue.22, p.1107411081, 2006.
DOI : 10.1128/JVI.01150-06

K. S. Chang, J. Jiang, Z. Cai, and G. Luo, Human Apolipoprotein E Is Required for Infectivity and Production of Hepatitis C Virus in Cell Culture, Journal of Virology, vol.81, issue.24, pp.81-1378313793, 2007.
DOI : 10.1128/JVI.01091-07

P. Gastaminza, G. Cheng, S. Wieland, J. Zhong, W. Liao et al., Cellular Determinants of Hepatitis C Virus Assembly, Maturation, Degradation, and Secretion, Journal of Virology, vol.82, issue.5, p.21202129, 2008.
DOI : 10.1128/JVI.02053-07

S. J. Meex, U. Andreo, J. D. Sparks, and E. A. Fisher, Huh-7 or HepG2 cells: which is the better model for studying human apolipoprotein-B100 assembly and secretion?, The Journal of Lipid Research, vol.52, issue.1, p.152158, 2011.
DOI : 10.1194/jlr.D008888

K. Ishii, T. Suzuki, and M. Mizokami, Characterization of infectious hepatitis C virus from liver-derived cell lines, Biochem. Biophys. Res. Commun, vol.377, p.747751, 2008.

P. Gastaminza, K. A. Dryden, B. Boyd, M. R. Wood, M. Law et al., Ultrastructural and Biophysical Characterization of Hepatitis C Virus Particles Produced in Cell Culture, Journal of Virology, vol.84, issue.21, 2010.
DOI : 10.1128/JVI.00526-10

B. D. Lindenbach, P. Meuleman, A. Ploss, T. Vanwolleghem, A. J. Syder et al., Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro, Proc. Natl. Acad. Sci, p.38053809, 2006.
DOI : 10.1073/pnas.0511218103

V. Calle, J. F. Meritet, and O. Scatton, Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes, Gastroenterology, vol.139, p.13551364, 2010.

B. Jammart, M. Michelet, E. I. Pecheur, R. Parent, B. Bartosch et al., VLDL-producing and HCV-replicating HepG2 cells secrete no more LVP than VLDL-deficient Huh7.5 cells, J. Virol, vol.87, p.50655080, 2013.
DOI : 10.1128/jvi.01405-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624324

H. Aizaki, K. Morikawa, M. Fukasawa, H. Hara, Y. Inoue et al., Critical Role of Virion-Associated Cholesterol and Sphingolipid in Hepatitis C Virus Infection, Journal of Virology, vol.82, issue.12, p.57155724, 2008.
DOI : 10.1128/JVI.02530-07

V. Icard, O. Diaz, C. Scholtes, L. Perrin-cocon, C. Ramiere et al., Secretion of Hepatitis C Virus Envelope Glycoproteins Depends on Assembly of Apolipoprotein B Positive Lipoproteins, PLoS ONE, vol.15, issue.1, p.4233, 2009.
DOI : 10.1371/journal.pone.0004233.g010

J. C. Meunier, R. S. Russell, R. E. Engle, K. N. Faulk, R. H. Purcell et al., Apolipoprotein C1 Association with Hepatitis C Virus, Journal of Virology, vol.82, issue.19, p.96479656, 2008.
DOI : 10.1128/JVI.00914-08

W. J. Benga, S. E. Krieger, M. Dimitrova, M. B. Zeisel, M. Parnot et al., Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles, Hepatology, vol.47, issue.2 Suppl 1, p.4353, 2010.
DOI : 10.1002/hep.23278

URL : https://hal.archives-ouvertes.fr/inserm-00705655

D. M. Owen, H. Huang, J. Ye, M. Gale, and . Jr, Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor, Virology, vol.394, issue.1, p.99108, 2009.
DOI : 10.1016/j.virol.2009.08.037

K. Tomiyasu, B. W. Walsh, K. Ikewaki, H. Judge, and F. M. Sacks, Differential Metabolism of Human VLDL According to Content of ApoE and ApoC-III, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.21, issue.9, p.14941500, 2001.
DOI : 10.1161/hq0901.094489

M. Dreux, B. Boson, S. Ricard-blum, J. Molle, D. Lavillette et al., The Exchangeable Apolipoprotein ApoC-I Promotes Membrane Fusion of Hepatitis C Virus, Journal of Biological Chemistry, vol.282, issue.44, p.3235732369, 2007.
DOI : 10.1074/jbc.M705358200

URL : https://hal.archives-ouvertes.fr/hal-00315131

B. Mazumdar, A. Banerjee, K. Meyer, and R. Ray, Hepatitis C virus E1 envelope glycoprotein interacts with apolipoproteins in facilitating entry into hepatocytes, Hepatology, vol.136, issue.4, p.11491156, 2011.
DOI : 10.1002/hep.24523

G. Koutsoudakis, J. Dragun, S. Perez-del-pulgar, M. Coto-llerena, L. Mensa et al., Forns, X. Interplay between basic residues of hepatitis C virus glycoprotein E2 with viral receptors, neutralizing antibodies and lipoproteins, PLoS One, 2012.

J. Zhong, P. Gastaminza, J. Chung, Z. Stamataki, M. Isogawa et al., Persistent Hepatitis C Virus Infection In Vitro: Coevolution of Virus and Host, Journal of Virology, vol.80, issue.22, p.1108211093, 2006.
DOI : 10.1128/JVI.01307-06

A. Sabahi, K. A. Marsh, H. Dahari, P. Corcoran, J. M. Lamora et al., The rate of hepatitis C virus infection initiation in vitro is directly related to particle density, Virology, vol.407, issue.1, p.110119, 2010.
DOI : 10.1016/j.virol.2010.07.026

V. Agnello, G. Abel, M. Elfahal, G. B. Knight, and Q. X. Zhang, Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor, Proc. Natl. Acad. Sci. USA 1999, p.1276612771
DOI : 10.1073/pnas.96.22.12766

F. Terce, G. Duverlie, Y. Rouille, and J. Dubuisson, Role of low-density lipoprotein receptor in the hepatitis C virus life cycle, Hepatology, vol.55, p.9981007, 2012.

J. R. Bishop, M. R. Passos-bueno, L. Fong, K. I. Stanford, J. C. Gonzales et al., Deletion of the Basement Membrane Heparan Sulfate Proteoglycan Type XVIII Collagen Causes Hypertriglyceridemia in Mice and Humans, PLoS ONE, vol.284, issue.11, p.13919, 2010.
DOI : 10.1371/journal.pone.0013919.s001

C. Zheng, S. J. Murdoch, J. D. Brunzell, and F. M. Sacks, Lipoprotein Lipase Bound to Apolipoprotein B Lipoproteins Accelerates Clearance of Postprandial Lipoproteins in Humans, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.4, p.891896, 2006.
DOI : 10.1161/01.ATV.0000203512.01007.3d

M. B. Zeisel, D. J. Felmlee, and T. F. Baumert, Hepatitis C Virus Entry, Curr. Top. Microbiol. Immunol, vol.369, issue.87112, 2013.
DOI : 10.1007/978-3-642-27340-7_4

URL : https://hal.archives-ouvertes.fr/inserm-00850902

J. Lupberger, M. B. Zeisel, F. Xiao, C. Thumann, I. Fofana et al., EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy, Nature Medicine, vol.31, issue.5, p.589595, 2011.
DOI : 10.1016/0022-1759(83)90303-4

URL : https://hal.archives-ouvertes.fr/inserm-00705829

L. Zona, J. Lupberger, N. Sidahmed-adrar, C. Thumann, H. J. Harris et al., HRas Signal Transduction Promotes Hepatitis C Virus Cell Entry by Triggering Assembly of the Host Tetraspanin Receptor Complex, Cell Host & Microbe, vol.13, issue.3, p.302313, 2013.
DOI : 10.1016/j.chom.2013.02.006

R. Fraser, B. R. Dobbs, and G. W. Rogers, Lipoproteins and the liver sieve: The role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, Atherosclerosis, and cirrhosis, Hepatology, vol.21, p.863874, 1995.

S. Ishibashi, S. Perrey, Z. Chen, J. Osuga, M. Shimada et al., Role of the low density lipoprotein (LDL) receptor pathway in the metabolism of chylomicron remnants. A quantitative study in knockout mice lacking the LDL receptor, apolipoprotein E, or both, J. Biol. Chem, pp.271-2242222427, 1996.

A. Rohlmann, M. Gotthardt, R. E. Hammer, and J. Herz, Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants., Journal of Clinical Investigation, vol.101, issue.3, p.689695, 1998.
DOI : 10.1172/JCI1240

L. C. Wilsie and R. A. Orlando, The Low Density Lipoprotein Receptor-related Protein Complexes with Cell Surface Heparan Sulfate Proteoglycans to Regulate Proteoglycan-mediated Lipoprotein Catabolism, Journal of Biological Chemistry, vol.278, issue.18, pp.278-1575815764, 2003.
DOI : 10.1074/jbc.M208786200

K. Chen, M. L. Liu, L. Schaffer, M. Li, G. Boden et al., Type 2 diabetes in mice induces hepatic overexpression of sulfatase 2, a novel factor that suppresses uptake of remnant lipoproteins, Hepatology, vol.27, issue.6, 2010.
DOI : 10.1002/hep.23916

H. C. Hassing, H. Mooij, S. Guo, B. P. Monia, K. Chen et al., Inhibition of hepatic sulfatase-2 In Vivo: A novel strategy to correct diabetic dyslipidemia, Hepatology, vol.114, issue.6, p.17461753, 2012.
DOI : 10.1002/hep.25580

J. M. Macarthur, J. R. Bishop, K. I. Stanford, L. Wang, A. Bensadoun et al., Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members, Journal of Clinical Investigation, vol.117, issue.1, p.153164, 2007.
DOI : 10.1172/JCI29154

K. I. Stanford, J. R. Bishop, E. M. Foley, J. C. Gonzales, I. R. Niesman et al., Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice, Journal of Clinical Investigation, vol.119, p.32363245, 2009.
DOI : 10.1172/JCI38251DS1

B. L. Trigatti, M. Krieger, and A. Rigotti, Influence of the HDL Receptor SR-BI on Lipoprotein Metabolism and Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.23, issue.10, p.17321738, 2003.
DOI : 10.1161/01.ATV.0000091363.28501.84

D. Morrone, W. S. Weintraub, P. P. Toth, M. E. Hanson, R. S. Lowe et al., Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: A pooled analysis of over 21,000 subjects from 27 clinical trials, Atherosclerosis, vol.223, issue.2, p.251261, 2012.
DOI : 10.1016/j.atherosclerosis.2012.02.016

R. Thomssen and S. Bonk, Virolytic action of lipoprotein lipase on hepatitis C virus in human sera, Medical Microbiology and Immunology, vol.191, issue.1, 1724.
DOI : 10.1007/s00430-001-0106-x

U. Andreo, P. Maillard, O. Kalinina, M. Walic, E. Meurs et al., Lipoprotein lipase mediates hepatitis C virus (HCV) cell entry and inhibits HCV infection, Cellular Microbiology, vol.267, issue.10, p.24452456, 2007.
DOI : 10.1128/JVI.01307-06

Y. Shimizu, T. Hishiki, K. Sugiyama, K. Ogawa, K. Funami et al., Lipoprotein lipase and hepatic triglyceride lipase reduce the infectivity of hepatitis C virus (HCV) through their catalytic activities on HCV-associated lipoproteins, Virology, vol.407, issue.1, p.152159, 2010.
DOI : 10.1016/j.virol.2010.08.011

P. Maillard, M. Walic, P. Meuleman, F. Roohvand, T. Huby et al., Lipoprotein Lipase Inhibits Hepatitis C Virus (HCV) Infection by Blocking Virus Cell Entry, PLoS ONE, vol.6, issue.10, p.26637, 2011.
DOI : 10.1371/journal.pone.0026637.s001

H. Y. Sun, C. C. Lin, J. C. Lee, S. W. Wang, P. N. Cheng et al., Very low-density lipoprotein/lipo-viro particles reverse lipoprotein lipase-mediated inhibition of hepatitis C virus infection via apolipoprotein C-III, Gut, vol.322, issue.Suppl, pp.10-1136, 2012.
DOI : 10.1136/gutjnl-2011-301798

H. Barth, C. Schafer, M. I. Adah, F. Zhang, R. J. Linhardt et al., Cellular Binding of Hepatitis C Virus Envelope Glycoprotein E2 Requires Cell Surface Heparan Sulfate, Journal of Biological Chemistry, vol.278, issue.42, pp.278-4100341012, 2003.
DOI : 10.1074/jbc.M302267200

H. Barth, E. K. Schnober, F. Zhang, R. J. Linhardt, E. Depla et al., Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction, J. Virol, vol.80, 2006.

J. Jiang, W. Cun, X. Wu, Q. Shi, H. Tang et al., Hepatitis C Virus Attachment Mediated by Apolipoprotein E Binding to Cell Surface Heparan Sulfate, Journal of Virology, vol.86, issue.13, p.72567267, 2012.
DOI : 10.1128/JVI.07222-11

S. B. Kapadia, H. Barth, T. Baumert, J. A. Mckeating, and F. Chisari, Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J. Viro, p.374383, 2007.

I. V. Fuki, M. E. Meyer, and K. J. Williams, Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts, Biochem. J, pp.351-607612, 2000.

E. Scarselli, H. Ansuini, R. Cerino, R. M. Roccasecca, S. Acali et al., The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus, The EMBO Journal, vol.269, issue.19, p.50175025, 2002.
DOI : 10.1093/emboj/cdf529

V. Ghisetti and B. Lavezzo, Scavenger receptor class B type I and hepatitis C virus infection of primary tupaia hepatocytes, J. Virol, pp.79-57745785, 2005.

H. Barth, E. K. Schnober, C. Neumann-haefelin, C. Thumann, M. B. Zeisel et al., Scavenger Receptor Class B Is Required for Hepatitis C Virus Uptake and Cross-Presentation by Human Dendritic Cells, Journal of Virology, vol.82, issue.7, p.34663479, 2008.
DOI : 10.1128/JVI.02478-07

C. M. Rice, R. Cortese, and A. Vitelli, Role of scavenger receptor class B type I in hepatitis C virus entry: Kinetics and molecular determinants, J. Virol, vol.84, p.3443, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00580589

M. Dreux, V. L. Dao-thi, J. Fresquet, M. Guerin, Z. Julia et al., Receptor Complementation and Mutagenesis Reveal SR-BI as an Essential HCV Entry Factor and Functionally Imply Its Intra- and Extra-Cellular Domains, PLoS Pathogens, vol.100, issue.2, 2009.
DOI : 10.1371/journal.ppat.1000310.s005

M. Dreux, T. Pietschmann, C. Granier, C. Voisset, S. Ricard-blum et al., High Density Lipoprotein Inhibits Hepatitis C Virus-neutralizing Antibodies by Stimulating Cell Entry via Activation of the Scavenger Receptor BI, Journal of Biological Chemistry, vol.281, issue.27, pp.281-1828518295, 2006.
DOI : 10.1074/jbc.M602706200

URL : https://hal.archives-ouvertes.fr/hal-00313930

A. Haberstroh, E. K. Schnober, M. B. Zeisel, P. Carolla, H. Barth et al., et al. Neutralizing host responses in hepatitis C virus infection target viral entry at postbinding steps and membrane fusion, Gastroenterology, vol.135, p.17191728, 2008.

M. B. Zeisel, D. Da-costa, and T. Baumert, Opening the door for hepatitis C virus infection in genetically humanized mice, Hepatology, vol.207, issue.5, p.18731875, 2011.
DOI : 10.1002/hep.24603

URL : https://hal.archives-ouvertes.fr/inserm-00701498

M. B. Zeisel, G. Koutsoudakis, E. K. Schnober, A. Haberstroh, H. E. Blum et al., Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81, Hepatology, vol.279, issue.6, p.17221731, 2007.
DOI : 10.1002/hep.21994

URL : https://hal.archives-ouvertes.fr/inserm-00395706

D. Masson, M. Koseki, M. Ishibashi, C. J. Larson, S. G. Miller et al., Increased HDL Cholesterol and ApoA-I in Humans and Mice Treated With a Novel SR-BI Inhibitor, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.12, p.29, 2009.
DOI : 10.1161/ATVBAHA.109.191320

A. J. Syder, H. Lee, M. B. Zeisel, J. Grove, E. Soulier et al., Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors, Journal of Hepatology, vol.54, issue.1, p.4855, 2011.
DOI : 10.1016/j.jhep.2010.06.024

R. Out, M. Hoekstra, S. C. De-jager, P. De-vos, D. R. Van-der-westhuyzen et al., Adenovirus-mediated hepatic overexpression of scavenger receptor class B type I accelerates chylomicron metabolism in C57BL/6J mice, The Journal of Lipid Research, vol.46, issue.6, pp.46-11721181, 2005.
DOI : 10.1194/jlr.M400361-JLR200

M. Van-eck, M. Hoekstra, R. Out, I. S. Bos, J. K. Kruijt et al., Scavenger receptor BI facilitates the metabolism of VLDL lipoproteins in vivo, The Journal of Lipid Research, vol.49, issue.1, pp.49-136146, 2008.
DOI : 10.1194/jlr.M700355-JLR200

D. Thi, V. L. Granier, C. Zeisel, M. B. Guerin, M. Mancip et al., Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps, J. Biol. Chem, vol.287, p.3124231257, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00965024

M. N. Zahid, M. Turek, F. Xiao, V. L. Thi, M. Guerin et al., The post-binding activity of scavenger receptor BI mediates initiation of hepatitis C virus infection and viral dissemination, Hepatology, vol.57, p.492504, 2013.

B. Sainz, . Jr, N. Barretto, D. N. Martin, N. Hiraga et al., A.; et al. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor, Nat. Med, vol.18, p.281285, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00931582

S. Haid, T. Pietschmann, and E. I. Pecheur, Low pH-dependent Hepatitis C Virus Membrane Fusion Depends on E2 Integrity, Target Lipid Composition, and Density of Virus Particles, Journal of Biological Chemistry, vol.284, issue.26, p.1765717667, 2009.
DOI : 10.1074/jbc.M109.014647

E. I. Pecheur, O. Diaz, J. Molle, V. Icard, P. Bonnafous et al., Morphological Characterization and Fusion Properties of Triglyceride-rich Lipoproteins Obtained from Cells Transduced with Hepatitis C Virus Glycoproteins, Journal of Biological Chemistry, vol.285, issue.33, 2010.
DOI : 10.1074/jbc.M110.131664

C. Voisset, M. Lavie, F. Helle, A. Op-de-beeck, A. Bilheu et al., et al. Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry, N Cell Microbiol, vol.10, p.606617, 2008.

V. Rocha-perugini, M. Lavie, D. Delgrange, J. Canton, A. Pillez et al., The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry, BMC Microbiology, vol.9, issue.1, p.111, 2009.
DOI : 10.1186/1471-2180-9-111

C. J. Packard and J. Shepherd, Lipoprotein Heterogeneity and Apolipoprotein B Metabolism, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.12, pp.17-35423556, 1997.
DOI : 10.1161/01.ATV.17.12.3542

M. Yamamoto, H. Aizaki, M. Fukasawa, T. Teraoka, T. Miyamura et al., Structural requirements of virion-associated cholesterol for infectivity, buoyant density and apolipoprotein association of hepatitis C virus, Journal of General Virology, vol.92, issue.9, 2011.
DOI : 10.1099/vir.0.032391-0

V. Lohmann, F. Korner, J. Koch, U. Herian, L. Theilmann et al., Replication of Subgenomic Hepatitis C Virus RNAs in a Hepatoma Cell Line, Science, vol.285, issue.5424, p.110113, 1999.
DOI : 10.1126/science.285.5424.110

H. Aizaki, K. J. Lee, V. M. Sung, H. Ishiko, and M. M. Lai, Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts, Virology, vol.324, issue.2, p.450461, 2004.
DOI : 10.1016/j.virol.2004.03.034

C. Wang, M. Gale, . Jr, B. C. Keller, H. Huang et al., Identification of FBL2 As a Geranylgeranylated Cellular Protein Required for Hepatitis C Virus RNA Replication, Molecular Cell, vol.18, issue.4, p.425434, 2005.
DOI : 10.1016/j.molcel.2005.04.004

S. B. Kapadia and F. Chisari, Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids, Proc. Natl. Acad. Sci. USA 2005, p.25612566
DOI : 10.1073/pnas.0409834102

C. Scholtes, O. Diaz, V. Icard, A. Kaul, R. Bartenschlager et al., Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR, Journal of Hepatology, vol.48, issue.2, p.48, 2008.
DOI : 10.1016/j.jhep.2007.09.015

P. Chhatwal, D. Bankwitz, J. Gentzsch, A. Frentzen, P. Schult et al., Bile Acids Specifically Increase Hepatitis C Virus RNA-Replication, PLoS ONE, vol.6, issue.4, p.36029, 2012.
DOI : 10.1371/journal.pone.0036029.s003

I. Romero-brey, A. Merz, A. Chiramel, J. Y. Lee, P. Chlanda et al., Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Hepatitis C Virus Replication, PLoS Pathogens, vol.116, issue.12, p.1003056, 2012.
DOI : 10.1371/journal.ppat.1003056.s008

R. V. Farese, . Jr, and M. Ott, Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1, Nat. Med, vol.16, p.12951298, 2010.

T. F. Baumert, C. Schuster, and E. Hildt, TIP47 plays a crucial role in the life cycle of hepatitis C virus, J. Hepatol

Y. Miyanari, K. Atsuzawa, N. Usuda, K. Watashi, T. Hishiki et al., The lipid droplet is an important organelle for hepatitis C virus production, Nature Cell Biology, vol.71, issue.9, p.10891097, 2007.
DOI : 10.1007/s00418-005-0061-5

Y. Shimizu, T. Hishiki, S. Ujino, K. Sugiyama, K. Funami et al., Lipoprotein component associated with hepatitis C virus is essential for virus infectivity, Current Opinion in Virology, vol.1, issue.1, 1926.
DOI : 10.1016/j.coviro.2011.05.017

S. T. Shi, K. J. Lee, H. Aizaki, S. B. Hwang, and M. M. Lai, Hepatitis C Virus RNA Replication Occurs on a Detergent-Resistant Membrane That Cofractionates with Caveolin-2, Journal of Virology, vol.77, issue.7, pp.77-41604168, 2003.
DOI : 10.1128/JVI.77.7.4160-4168.2003

Y. Hirata, K. Ikeda, M. Sudoh, Y. Tokunaga, A. Suzuki et al., Self-Enhancement of Hepatitis C Virus Replication by Promotion of Specific Sphingolipid Biosynthesis, PLoS Pathogens, vol.8, issue.8, p.1002860, 2012.
DOI : 10.1371/journal.ppat.1002860.s013

Y. Aoki and M. Arisawa, Host sphingolipid biosynthesis as a target for hepatitis C virus therapy, Nat. Chem. Biol, vol.1, p.333337, 2005.

L. Weng, Y. Hirata, M. Arai, M. Kohara, T. Wakita et al., Sphingomyelin Activates Hepatitis C Virus RNA Polymerase in a Genotype-Specific Manner, Journal of Virology, vol.84, issue.22, p.1176111770, 2010.
DOI : 10.1128/JVI.00638-10

S. Reiss, I. Rebhan, P. Backes, I. Romero-brey, H. Erfle et al., Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment, Cell Host Microbe, vol.9, p.3245, 2011.

S. H. Hsu, B. Wang, J. Kota, J. Yu, S. Costinean et al., Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver, Journal of Clinical Investigation, vol.122, issue.8, p.28712883, 2012.
DOI : 10.1172/JCI63539DS1

T. F. Tsai, MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis, Journal of Clinical Investigation, vol.122, issue.8, p.28842897, 2012.
DOI : 10.1172/JCI63455DS1

C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow, Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA, Science, vol.309, issue.5740, p.15771581, 2005.
DOI : 10.1126/science.1113329

T. Shimakami, D. Yamane, R. K. Jangra, B. J. Kempf, C. Spaniel et al., Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex, Proc. Natl. Acad. Sci. USA 2012, p.941946
DOI : 10.1073/pnas.1112263109

M. Sarasin-filipowicz, J. Krol, I. Markiewicz, M. H. Heim, and W. Filipowicz, Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy, Nature Medicine, vol.15, issue.1, p.3133, 2009.
DOI : 10.1136/gut.2007.128611

K. N. Burger, Honing, S. TIP47 functions in the biogenesis of lipid droplets, J. Cell Biol, pp.185-641655, 2009.

S. Martin and R. G. Parton, Lipid droplets: a unified view of a dynamic organelle, Nature Reviews Molecular Cell Biology, vol.13, issue.5, 2006.
DOI : 10.1038/nrm1912

S. Sato, M. Fukasawa, Y. Yamakawa, T. Natsume, T. Suzuki et al., Proteomic Profiling of Lipid Droplet Proteins in Hepatoma Cell Lines Expressing Hepatitis C Virus Core Protein, Journal of Biochemistry, vol.139, issue.5, p.921930, 2006.
DOI : 10.1093/jb/mvj104

S. Boulant, M. W. Douglas, L. Moody, A. Budkowska, P. Targett-adams et al., Hepatitis C Virus Core Protein Induces Lipid Droplet Redistribution in a Microtubule- and Dynein-Dependent Manner, Traffic, vol.278, issue.8, p.12681282, 2008.
DOI : 10.1111/j.1600-0854.2008.00767.x

S. Boulant, P. Targett-adams, and J. Mclauchlan, Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus, Journal of General Virology, vol.88, issue.8, p.22042213, 2007.
DOI : 10.1099/vir.0.82898-0

A. Shavinskaya, S. Boulant, F. Penin, J. Mclauchlan, and R. Bartenschlager, The Lipid Droplet Binding Domain of Hepatitis C Virus Core Protein Is a Major Determinant for Efficient Virus Assembly, Journal of Biological Chemistry, vol.282, issue.51, p.3715837169, 2007.
DOI : 10.1074/jbc.M707329200

URL : https://hal.archives-ouvertes.fr/hal-00315148

P. Targett-adams, G. Hope, S. Boulant, and J. Mclauchlan, Maturation of Hepatitis C Virus Core Protein by Signal Peptide Peptidase Is Required for Virus Production, Journal of Biological Chemistry, vol.283, issue.24, p.1685016859, 2008.
DOI : 10.1074/jbc.M802273200

C. Schuster, M. Lefevre, and T. F. Baumert, Triglyceride synthesis and hepatitis C virus production: Identification of a novel host factor as antiviral target, Hepatology, vol.50, issue.3, 2011.
DOI : 10.1002/hep.24177

A. Kaul, S. Stauffer, C. Berger, T. Pertel, J. Schmitt et al., Essential Role of Cyclophilin A for Hepatitis C Virus Replication and Virus Production and Possible Link to Polyprotein Cleavage Kinetics, PLoS Pathogens, vol.162, issue.8, p.1000546, 2009.
DOI : 10.1371/journal.ppat.1000546.s001

L. J. Anderson, K. Lin, T. Compton, and B. Wiedmann, Inhibition of cyclophilins alters lipid trafficking and blocks hepatitis C virus secretion, Virology Journal, vol.8, issue.1, p.329, 2011.
DOI : 10.1038/nprot.2006.395

A. D. Olmstead, W. Knecht, I. Lazarov, S. B. Dixit, and F. Jean, Human Subtilase SKI-1/S1P Is a Master Regulator of the HCV Lifecycle and a Potential Host Cell Target for Developing Indirect-Acting Antiviral Agents, PLoS Pathogens, vol.268, issue.Pt 7, p.1002468, 2012.
DOI : 10.1371/journal.ppat.1002468.s006

H. Huang, F. Sun, D. M. Owen, W. Li, Y. Chen et al., Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins, Proc. Natl. Acad. Sci, p.58485853, 2007.
DOI : 10.1073/pnas.0700760104

G. Perlemuter, A. Sabile, P. Letteron, G. Vona, A. Topilco et al., Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis, The FASEB Journal, vol.16, issue.2, p.185194, 2002.
DOI : 10.1096/fj.01-0396com

J. M. Petit, M. Benichou, L. Duvillard, V. Jooste, J. B. Bour et al., Hillon, P. Hepatitis C virus-associated hypobetalipoproteinemia is correlated with plasma viral load, steatosis, and liver fibrosis, Am. J. Gastroenterol, pp.98-11501154, 2003.

J. Jiang and G. Luo, Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles, J. Virol, vol.83, p.1268012691, 2009.

R. H. Steenbergen, M. A. Joyce, G. Lund, J. Lewis, R. Chen et al., Lipoprotein profiles in SCID/uPA mice transplanted with human hepatocytes become human-like and correlate with HCV infection success, AJP: Gastrointestinal and Liver Physiology, vol.299, issue.4, pp.299-844, 2010.
DOI : 10.1152/ajpgi.00200.2010

K. E. Coller, N. S. Heaton, K. L. Berger, J. D. Cooper, J. L. Saunders et al., Molecular Determinants and Dynamics of Hepatitis C Virus Secretion, PLoS Pathogens, vol.131, issue.Pt 13, p.1002466, 2012.
DOI : 10.1371/journal.ppat.1002466.s030

Y. Amako, A. Sarkeshik, H. Hotta, J. Yates, and A. Siddiqui, Role of Oxysterol Binding Protein in Hepatitis C Virus infection, Journal of Virology, vol.83, issue.18, p.92379246, 2009.
DOI : 10.1128/JVI.00958-09

Y. Amako, G. H. Syed, and A. Siddiqui, Protein Kinase D Negatively Regulates Hepatitis C Virus Secretion through Phosphorylation of Oxysterol-binding Protein and Ceramide Transfer Protein, Journal of Biological Chemistry, vol.286, issue.13, p.1126511274, 2011.
DOI : 10.1074/jbc.M110.182097

B. Roe, E. Kensicki, R. Mohney, and W. W. Hall, Metabolomic Profile of Hepatitis C Virus-Infected Hepatocytes, PLoS ONE, vol.42, issue.8, 2011.
DOI : 10.1371/journal.pone.0023641.s002