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Abstract 

 

Vascular function has been found to be impaired in patients with sickle cell disease (SCD). 

The present study investigated the determinants of systemic vascular resistance in two main 

SCD syndromes in children: sickle cell anemia (SCA) and sickle cell-hemoglobin C disease 

(SCC). Nitric oxide metabolites (NOx), hematological, hemorheological, and hemodynamical 

parameters were investigated in 61 children with SCA and 49 children with SCC. While mean 

arterial pressure was not different between SCA and SCC children, systemic vascular 

resistance (SVR) was greater in SCC children. Although SVR and blood viscosity (b) were 

not correlated in SCC children, the increase of b (+18%) in SCC children compared to SCA 

children results in a greater mean SVR in this former group. SVR was positively correlated 

with b, hemoglobin (Hb) level and RBC deformability, and negatively with NOx level in 

SCA children. Multivariate linear regression model showed that both NOx and Hb levels were 

independently associated with SVR in SCA children. In SCC children, only NOx level was 

associated with SVR. In conclusion, vascular function of SCC children seems to better cope 

with higher b compared to SCA children. Since the occurrence of vaso-occlusive like 

complications are less frequent in SCC than in SCA children, this finding suggests a 

pathophysiological link between the vascular function alteration and these clinical 

manifestations. In addition, our results suggested that nitric oxide metabolism plays a key role 

in the regulation of SVR, both in SCA and SCC.  

 

Key words: blood rheology, nitric oxide, sickle cell disease, vascular function 
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Introduction  

 

Sickle cell disease (SCD) patients are characterized by wide hemorheological alterations [36], 

which participate to the pathophysiological mechanisms of vaso-occlusion [1, 27, 32]. Sickle 

cell anemia (SCA) and sickle cell hemoglobin C disease (SCC) are the most frequent forms of 

SCD but they drastically differ in their hemorheological profile [36]. SCC patients usually 

exhibit moderate anemia as compared to SCA patients, a characteristic which explains why 

they exhibit blood hyper-viscosity in comparison with SCA patients or control population 

[36]. In the traditional view, it has long been postulated that conditions in which blood 

viscosity (b) is increased should be associated with increased vascular resistance and 

decreased tissue perfusion [11, 17]. 

The study of the relationship between b and systemic vascular resistance (SVR) may provide 

relevant information on the vascular function [15-16, 22, 39]. Counterintuitive data have been 

recently reported in animal models demonstrating that increment in b resulted in a 

paradoxical decrease of vascular resistance. This observation demonstrates that vascular 

function, if not impaired, is able to adapt to increased b, until a certain threshold, and thus 

modulating SVR [12-14]. Although some data support an impaired vascular function in SCA 

patients [6, 18], the vascular function of SCC patients has been poorly described up to now. 

We propose, in the present study, to explore the relationships between b and SVR in a group 

of SCA children and a group of SCC children. Since patients with SCC, despite their very 

high b [36], present an usually milder clinical course of the disease than SCA patients [26], 

we hypothesized that SVR should be less dependent on b in SCC patients than in SCA 

patients, indicating more preserved vascular control mechanisms in the former group than in 

the latter one.  
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In addition, it has been shown that nitric oxide (NO) metabolism is impaired in SCA [21] and 

may play a key role in the regulation of vascular function [6]. To our best knowledge, no 

study had investigated NO production in SCC so far. We tested the association of nitric oxide 

metabolites (NOx) level with SVR and we hypothesized that NO production should be lower 

in SCA than in SCC children.  

 

Methods 

 

Patients and Ethics statement  

A total of 110 children with SCD aged from 8 to 16 yrs old were included in the study: 61 

with SCA and 49 with SCC. All these children had been identified by neonatal sickle cell 

disease screening and thus have benefited, since birth, of medical follow-up at the Sickle Cell 

Center of the Academic Hospital of Pointe-à-Pitre (Guadeloupe). All of them were in steady-

state condition at the time of their recruitment. The diagnosis of SCD was established by 

isoelectrofocusing (Multiphor II™ System, GE HEALTH CARE, Buck, UK), citrate agar 

electrophoresis, cation-exchange high performance liquid chromatography (VARIANT™, 

Bio-Rad Laboratories, Hercules, CA, USA) and confirmed by DNA studies for the SCA 

children [35]. Steady state was defined as a period without blood transfusions within the 

previous three months and the absence of acute episodes (infection, vaso-occlusive crisis, 

acute chest syndrome, stroke, priapism, splenic sequestration) for at least one month before 

enrolment in the study. Twenty-three percents of the SCA patients were under hydroxyurea 

(HU) therapy while no SCC patients received HU. NOx level, hemodynamical, 

hemorheological and hematological parameters were determined in all children. The painful 

vaso-occlusive (VOC) and acute chest syndrome (ACS) rates were calculated for each child 

by dividing the number of painful VOC or ACS episodes by the number of patient-years [32]. 
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An acute event was scored as a VOC or ACS using the criteria previously published [20]. All 

the information regarding the VOC or ACS episodes have been collected retrospectively and 

independently by three physicians who were not aware of the biological and hemodynamical 

results.  

 

The protocol was in accordance with the guidelines set by the Declaration of Helsinki and was 

approved by the Regional Ethics Committee (CPP Sud/Ouest Outre Mer III, Bordeaux, 

France; SAPOTILLE project, IRB number: 2009-A00211-56). All children were informed of 

the procedures and purposes of the study and all, as well as their parents, gave written 

informed consent.  

 

Biological measurements 

Venipuncture was performed between 8:00 a.m. and 10:00 a.m. EDTA blood samples were 

immediately used for measurements of hemoglobin concentration (Hb), hematocrit (Hct), 

mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), percent of 

reticulocytes (RET), and red blood cell (RBC), platelet (PLT) and white blood cell (WBC) 

counts (Max M-Retic, Coulter, USA). The b was determined at native Hct, at 25°C and at a 

shear rate of 225 s
−1

 using a cone-plate viscometer (Brookfield DVII+ with CPE40 spindle, 

Brookfield Engineering Labs, Natick, MA). RBC deformability (Elongation Index; EI) was 

determined at 37°C and at 30 Pa by ektacytometry, using the Laser-assisted Optical 

Rotational Cell Analyzer (LORCA, RR Mechatronics, Hoorn, the Netherlands). 

Measurements were carried out within 4 hours following venipuncture to avoid blood 

rheological alterations [38]. Full oxygenation of blood was performed before the 

measurements using the methodological procedures recommended [4]. NOx levels were 

determined by measuring plasma concentrations of nitrate/nitrite (after the conversion of 
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nitrate to nitrite utilizing nitrate reductase) with a colorimetric assay kit (Enzo Life Sciences, 

Villeurbanne, France). 

 

Hemodynamical parameters 

Systolic (SBP) and diastolic blood pressures (DBP) were manually measured at the brachial 

artery level and mean arterial pressure (MAP) was then calculated as: [(2 * DBP) + SBP] / 3. 

Hemodynamical parameters were assessed by transthoracic echocardiography using Sonos 

IE33 machines (Philips Medical Systems, Andover, MA, USA). Heart rate (HR), stroke 

volume (SV) and cardiac output were determined. The cardiac output was corrected by the 

body surface for determination of the cardiac index (CI). Systemic vascular resistance (SVR) 

was then calculated by dividing MAP by CI and expressed in Wood Unit (WU). Since no 

right heart catheterization was possible in this study, SVR calculation did not take into 

account the right atrial pressure (i.e. central venous pressure), which is usually estimated to be 

around 5-10 mmHg in this population [29, 31].  

 

Statistical analysis 

Results are presented as means ± SD. Biological and hemodynamical parameters were 

compared between SCA and SCC children using an unpaired Student t test. Correlation 

analyses were performed using a Pearson test in the SCA and SCC groups. The significance 

level was defined as p < 0.05. Significant associations found between SVR and biological 

parameters for each group were then included in a multivariate linear regression model to test 

the independent associations between SVR and the biological variables. Analyses were 

conducted using Statistica (v. 5.5, Statsoft, USA). 
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Results 

Anthropometric characteristics and acute complications 

Mean age (11.5 ± 2.4 yrs and 12.0 ± 2.3 yrs in SCA and SCC children, respectively) and 

height (147 ± 15 cm and 153 ± 16 cm in SCA and SCC children, respectively) were not 

different between the two groups. SCA children (37.4 ± 11.6 kg) had lower weight than SCC 

children (44.8 ± 14.5 kg; p < 0.01). Mean VOC (p < 0.05) and ACS (p < 0.001) rates were 

significantly greater in SCA (0.44 ± 0.48 and 0.15 ± 0.22 episodes/yr, respectively) than in 

SCC children (0.26 ± 0.39 and 0.03 ± 0.06 episodes/yr, respectively). 

 

Biological parameters 

As expected, WBC and PLT counts, MCV, MCH, and RET values were higher in SCA 

children than in SCC children (p < 0.001; Table 1) while RBC count, Hb, Hct, b, RBC 

deformability (AI) and NOx levels were lower in the SCA group than in the SCC group (p < 

0.01 or < 0.001; Table 1). 

 

Hemodynamical parameters 

Hemodynamical parameters are reported in the Table 2. Because SBP and DBP were not 

different between the two groups, MAP was similar in the SCA and SCC children (Table 2). 

Both SV (p < 0.01) and HR (p < 0.05) were greater in SCA children than in SCC children 

resulting in a greater CI (p < 0.001). SVR was lower in SCA patients compared to the SCC 

group (p < 0.001).  

 

Correlation analyses 

Significant positive correlations were observed between SVR and b, Hb level or RBC 

deformability in the SCA group (r = 0.31, p < 0.05, Figure 1a; r = 0.63, p < 0.001, Figure 2a; r 
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= 0.33, p < 0.05, Figure 3a, respectively) but not in the SCC group (r = 0.06, p > 0.05; Figure 

1b; r = -0.28, p > 0.05, Figure 2b; r = 0.03, p > 0.05, Figure 3b, respectively). Significant 

negative correlations were found in both SCA and SCC group between SVR and NOx (r = -

0.32, p < 0.05, Figure 4a; r = -0.36, p < 0.05, Figure 4b, respectively). No significant 

correlation was observed between SVR and RET. 

 

Multivariate linear regression model 

In SCA children, the multivariate linear regression model included SVR as dependent variable 

and b, Hb level, RBC deformability and NOx level as covariates. The overall model was 

statistically significant (R² = 0.55; p < 0.001) and only Hb and NOx levels remained 

significantly associated with SVR (beta = 0.74, p < 0.001 and beta = -0.30, p < 0.05, 

respectively). No multivariate linear regression model was performed in the SCC children 

since only SVR and NOx levels were associated (see above).  

 

Discussion  

The major findings of the present study are that 1) SCA children are characterized by lower 

Hb level, b and SVR than SCC children suggesting lower vascular stress in SCA than in 

SCC children but 2) SVR is positively correlated with b in SCA children and not in the SCC 

group demonstrating that the vascular system is able to better cope with high b in SCC than 

in SCA children to maintain SVR at a constant level. Finally, nitric oxide metabolism seems 

to be involved in the regulation of SVR in both SCA and SCC children. 

 

As previously shown, the hematological and hemorheological characteristics of SCC and 

SCA children included in this study shown significant differences [2, 10, 20, 36] with marked 

anemia, leucocytosis, reticulocytosis, thrombocytosis, lower b at native hematocrit and 
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reduced RBC deformability in the SCA group. Although SCC children had a 18% fold greater 

b and 27% fold greater SVR than SCA children, the two groups exhibited same SBP and 

DBP leading to similar MAP. This finding results from the fact that CI, as a consequence of 

severe anemia, was higher in SCA children in comparison with SCC children.  

  

In healthy population, vascular geometry adapts to compensate for increased b, hence 

limiting the increase in SVR [28, 33, 39]. A rise in b has been shown to increase the wall 

shear stress applied to the endothelium level, which produces more vasodilators, such as NO, 

leading to compensatory vasodilation [8, 34, 37, 39]. Vazquez et al. [39] demonstrated that, in 

healthy controls, SVR and b were not correlated which strongly supports the concept that 

vascular function may easily compensate for the increase in b in healthy individuals. Since 

SCC children have elevated b and SVR compared to SCA group, it could be suggested that 

vascular function is more impaired in SCC children than in SCA children. But the positive 

correlation found between SVR and b in the SCA group only, suggests that vascular 

function is more impaired in SCA than in SCC; a situation also described in type 1 diabetes 

children [39]. Indeed, although the vascular stress is higher in SCC children (greater SVR), 

their vascular system is better able to cope with increased blood viscosity than in SCA 

children. Besides, a recent study performed on a subgroup of SCA and SCC children included 

in this study demonstrated that increased blood viscosity was a risk factor for VOC in SCA 

but not in SCC children [20]. In addition, Mohan et al. [23] reported that endothelium-

dependent cutaneous vasodilation at the finger level was more impaired in SCA than in SCC 

disease suggesting, again, greater vascular dysfunction in SCA than in SCC.  

 

Our results also demonstrated a negative correlation between SVR and NOx level, and 

positive correlations between SVR and Hb level or RBC deformability in SCA children. 
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While it seems logic that lower NO production and higher Hb level (causing higher b) could 

induce greater SVR, the physiological meaning of the positive association between RBC 

deformability and SVR clearly deserves further explanation. Several experimental data have 

demonstrated that improved RBC deformability may cause a decrease of vascular resistance 

and facilitates blood flow [5, 30]. A decrease of RBC deformability may affect RBC velocity 

in the microcirculation, particularly when the blood pressure is lowered [9]. However, in the 

context of SCA [40], it is demonstrated that well deformable RBCs abnormally adhere to 

endothelial cells [24], hence impairing blood flow [19] and triggering VOC [3, 20]. 

Accordingly, the association between RBC deformability and SVR found in SCA children is 

not so surprising. Then, the multivariate linear regression analysis demonstrated that both Hb 

and NOx were independently associated with SVR in SCA children showing that both of 

these parameters play an independent and important role in determining SVR.  

While neither b, nor Hb level was associated with SVR in SCC children, increased NOx 

level was accompanied by decreased SVR. Although the lack of association between SVR 

and b in SCC children suggests a more preserved vascular function in this population than in 

SCA children, their SVR seems to be very sensitive to the amount of NO produced as it is the 

case for SCA children. Any decrease in NO bioavailability caused by hemolysis [18] and 

oxidative stress [7] could be susceptible to increase blood flow resistance in SCC. NOx levels 

have been previously found to be associated with VOC and ACS occurrence in SCA [25]. 

Indeed, the lower NOx level observed in our SCA children compared to the SCC group could 

partly explain why SCA children had an average higher rate of VOC and ACS than SCC 

children. 

 

In conclusion, the present study demonstrated that children with SCA have lower b resulting 

in a lower SVR than children with SCC. However, despite these differences, the vascular 
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function of SCC children seems to be more preserved than the one of SCA children since 

SVR is not correlated with b in SCC children. This observation may provide a partial 

explanation to the lower frequency of the vaso-occlusive clinical complication observed in 

SCC compared to SCA children [26]. Nevertheless, the vascular function of both SCD 

syndromes seems to be sensitive to the amount of nitric oxide produced.  

 

Funding 

The study has been funded by a Projet Hospitalier Recherche Clinique (PHRC) Interregional. 

The funder had no role in study design, data collection and analysis, decision to publish, or 

preparation of the manuscript. This work was also supported by European funds and the 

Conseil Régional de la Guadeloupe (fellowship to YL), as well as Inserm funding. 

The authors have declared that no competing interests exist. 

 

 

 



 12 

References 

[1] T. Alexy, S. Sangkatumvong, P. Connes, E. Pais, J. Tripette, J. C. Barthelemy, T. C. 

Fisher, H. J. Meiselman, M. C. Khoo and T. D. Coates, Sickle cell disease: Selected aspects of 

pathophysiology, autonomic nervous system function and rheological considerations in 

transfusion therapy. Clin Hemorheol Microcirc 44 (2010), 155-166. 

[2] S. K. Ballas, J. Larner, E. D. Smith, S. Surrey, E. Schwartz and E. F. Rappaport, The 

xerocytosis of Hb SC disease. Blood 69 (1987), 124-130. 

[3] S. K. Ballas and E. D. Smith, Red blood cell changes during the evolution of the sickle 

cell painful crisis. Blood 79 (1992), 2154-2163. 

[4] O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, 

M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. 

Shin, G. Thurston and J. L. Wautier, New guidelines for hemorheological laboratory 

techniques. Clin Hemorheol Microcirc 42 (2009), 75-97. 

[5] O. K. Baskurt, O. Yalcin and H. J. Meiselman, Hemorheology and vascular control 

mechanisms. Clin Hemorheol Microcirc 30 (2004), 169-178. 

[6] L. Belhassen, G. Pelle, S. Sediame, D. Bachir, C. Carville, C. Bucherer, C. Lacombe, F. 

Galacteros and S. Adnot, Endothelial dysfunction in patients with sickle cell disease is related 

to selective impairment of shear stress-mediated vasodilation. Blood 97 (2001), 1584-1589. 

[7] E. N. Chirico and V. Pialoux, Role of oxidative stress in the pathogenesis of sickle cell 

disease. IUBMB Life 64 (2012), 72-80. 

[8] A. Damaske, S. Muxel, F. Fasola, M. C. Radmacher, S. Schaefer, A. Jabs, D. Orphal, P. 

Wild, J. D. Parker, M. Fineschi, T. Munzel, S. Forconi and T. Gori, Peripheral 

hemorheological and vascular correlates of coronary blood flow. Clin Hemorheol Microcirc 

49 (2011), 261-269. 

[9] G. K. Driessen, T. M. Fischer, C. W. Haest, W. Inhoffen and H. Schmid-Schonbein, Flow 

behaviour of rigid red blood cells in the microcirculation. Int J Microcirc Clin Exp 3 (1984), 

197-210. 

[10] M. E. Fabry, D. K. Kaul, C. Raventos-Suarez, H. Chang and R. L. Nagel, SC 

erythrocytes have an abnormally high intracellular hemoglobin concentration. 

Pathophysiological consequences. J Clin Invest 70 (1982), 1315-1319. 

[11] S. Forconi and T. Gori, The evolution of the meaning of blood hyperviscosity in 

cardiovascular physiopathology: should we reinterpret Poiseuille? Clin Hemorheol Microcirc 

42 (2009), 1-6. 

[12] S. Forconi, P. Wild, T. Munzel and T. Gori, Endothelium and hyperviscosity. Clin 

Hemorheol Microcirc 49 (2011), 487-491. 

[13] T. Gori, Viscosity, platelet activation, and hematocrit: Progress in understanding their 

relationship with clinical and subclinical vascular disease. Clin Hemorheol Microcirc 49 

(2011), 37-42. 

[14] C. M. Hightower, B. Y. Salazar Vazquez, S. Woo Park, K. Sriram, J. Martini, O. Yalcin, 

A. G. Tsai, P. Cabrales, D. M. Tartakovsky, P. C. Johnson and M. Intaglietta, Integration of 

cardiovascular regulation by the blood/endothelium cell-free layer. Wiley Interdiscip Rev Syst 

Biol Med 3 (2011), 458-470. 

[15] J. I. Hoffman, Pulmonary vascular resistance and viscosity: the forgotten factor. Pediatr 

Cardiol 32 (2011), 557-561. 

[16] M. Intaglietta, Increased blood viscosity: disease, adaptation or treatment? Clin 

Hemorheol Microcirc 42 (2009), 305-306. 

[17] F. Jung, C. Mrowietz, B. Hiebl, R. P. Franke, G. Pindur and R. Sternitzky, Influence of 

rheological parameters on the velocity of erythrocytes passing nailfold capillaries in humans. 

Clin Hemorheol Microcirc 48 (2011), 129-139. 



 13 

[18] G. J. Kato, R. P. Hebbel, M. H. Steinberg and M. T. Gladwin, Vasculopathy in sickle cell 

disease: Biology, pathophysiology, genetics, translational medicine, and new research 

directions. Am J Hematol 84 (2009), 618-625. 

[19] D. K. Kaul and M. E. Fabry, In vivo studies of sickle red blood cells. Microcirculation 

11 (2004), 153-165. 

[20] Y. Lamarre, M. Romana, X. Waltz, M. L. Lalanne-Mistrih, B. Tressieres, L. Divialle-

Doumdo, M. D. Hardy-Dessources, J. Vent-Schmidt, M. Petras, C. Broquere, F. Maillard, V. 

Tarer, M. Etienne-Julan and P. Connes, Hemorheological risk factors of acute chest syndrome 

and painful vaso-occlusive crisis in children with sickle cell disease. Haematologica (2012). 

[21] B. L. Lopez, A. A. Kreshak, C. R. Morris, L. Davis-Moon, S. K. Ballas and X. L. Ma, L-

arginine levels are diminished in adult acute vaso-occlusive sickle cell crisis in the emergency 

department. Br J Haematol 120 (2003), 532-534. 

[22] J. Martini, B. Carpentier, A. C. Negrete, J. A. Frangos and M. Intaglietta, Paradoxical 

hypotension following increased hematocrit and blood viscosity. Am J Physiol Heart Circ 

Physiol 289 (2005), H2136-2143. 

[23] J. S. Mohan, G. Y. Lip, A. D. Blann, D. Bareford and J. M. Marshall, Endothelium-

dependent and endothelium-independent vasodilatation of the cutaneous circulation in sickle 

cell disease. Eur J Clin Invest 41 (2011), 546-551. 

[24] N. Mohandas and E. Evans, Adherence of sickle erythrocytes to vascular endothelial 

cells: requirement for both cell membrane changes and plasma factors. Blood 64 (1984), 282-

287. 

[25] C. R. Morris, F. A. Kuypers, S. Larkin, E. P. Vichinsky and L. A. Styles, Patterns of 

arginine and nitric oxide in patients with sickle cell disease with vaso-occlusive crisis and 

acute chest syndrome. J Pediatr Hematol Oncol 22 (2000), 515-520. 

[26] R. L. Nagel and M. H. Steinberg, Hemoglobin SC disease and HbC disorders. In: 

Disorders of hemoglobin: genetics, pathophysiology and clinical management. Steinberg 

M.H., Forget B.G., Higgs D.R. and Nagel R.L. Ed. Cambridge University Press. (2001), 756-

785. 

[27] D. Nebor, A. Bowers, M. D. Hardy-Dessources, J. Knight-Madden, M. Romana, H. Reid, 

J. C. Barthelemy, V. Cumming, O. Hue, J. Elion, M. Reid and P. Connes, Frequency of pain 

crises in sickle cell anemia and its relationship with the sympatho-vagal balance, blood 

viscosity and inflammation. Haematologica 96 (2011), 1589-1594. 

[28] P. Ohlmann, F. Jung, C. Mrowietz, T. Alt, S. Alt and W. Schmidt, Peripheral 

microcirculation during pregnancy and in women with pregnancy induced hypertension. Clin 

Hemorheol Microcirc 24 (2001), 183-191. 

[29] F. Parent, D. Bachir, J. Inamo, F. Lionnet, F. Driss, G. Loko, A. Habibi, S. Bennani, L. 

Savale, S. Adnot, B. Maitre, A. Yaici, L. Hajji, D. S. O'Callaghan, P. Clerson, R. Girot, F. 

Galacteros and G. Simonneau, A hemodynamic study of pulmonary hypertension in sickle 

cell disease. N Engl J Med 365 (2011), 44-53. 

[30] K. Parthasarathi and H. H. Lipowsky, Capillary recruitment in response to tissue hypoxia 

and its dependence on red blood cell deformability. Am J Physiol 277 (1999), H2145-2157. 

[31] F. D. Pashankar, J. Carbonella, A. Bazzy-Asaad and A. Friedman, Prevalence and risk 

factors of elevated pulmonary artery pressures in children with sickle cell disease. Pediatrics 

121 (2008), 777-782. 

[32] O. S. Platt, B. D. Thorington, D. J. Brambilla, P. F. Milner, W. F. Rosse, E. Vichinsky 

and T. R. Kinney, Pain in sickle cell disease. Rates and risk factors. N Engl J Med 325 (1991), 

11-16. 

[33] B. Y. Salazar Vazquez, Blood pressure and blood viscosity are not correlated in normal 

healthy subjects. Vasc Health Risk Manag (In press). 



 14 

[34] V. Smieško and P. C. Johnson, The arterial lumen is controlled by flow related shear 

stress. News Physiol Sci 8 (1993), 34-38. 

[35] V. Tarer, M. Etienne-Julan, J. P. Diara, M. S. Belloy, M. Mukizi-Mukaza, J. Elion and 

M. Romana, Sickle cell anemia in Guadeloupean children: pattern and prevalence of acute 

clinical events. Eur J Haematol 76 (2006), 193-199. 

[36] J. Tripette, T. Alexy, M. D. Hardy-Dessources, D. Mougenel, E. Beltan, T. Chalabi, R. 

Chout, M. Etienne-Julan, O. Hue, H. J. Meiselman and P. Connes, Red blood cell 

aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both 

homozygous sickle cell anemia and sickle-hemoglobin C disease. Haematologica 94 (2009), 

1060-1065. 

[37] A. G. Tsai, C. Acero, P. R. Nance, P. Cabrales, J. A. Frangos, D. G. Buerk and M. 

Intaglietta, Elevated plasma viscosity in extreme hemodilution increases perivascular nitric 

oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 288 

(2005), H1730-1739. 

[38] M. Uyuklu, M. Cengiz, P. Ulker, T. Hever, J. Tripette, P. Connes, N. Nemeth, H. J. 

Meiselman and O. K. Baskurt, Effects of storage duration and temperature of human blood on 

red cell deformability and aggregation. Clin Hemorheol Microcirc 41 (2009), 269-278. 

[39] B. Y. Vazquez, M. A. Vazquez, M. G. Jaquez, A. H. Huemoeller, M. Intaglietta and P. 

Cabrales, Blood pressure directly correlates with blood viscosity in diabetes type 1 children 

but not in normals. Clin Hemorheol Microcirc 44 (2010), 55-61. 

[40] J. L. Wautier and M. P. Wautier, Molecular basis of erythrocyte adhesion to endothelial 

cells in diseases. Clin Hemorheol Microcirc (2012). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

Figure 1 

Figure 1a: Relationship between SVR and b in SCA children 

Figure 1b: Relationship between SVR and b in SCC children 

 

Figure 2 

Figure 2a: Relationship between SVR and Hb level in SCA children 

Figure 2b: Relationship between SVR and Hb level in SCC children 

 

Figure 3 

Figure 3a: Relationship between SVR and RBC deformability (EI) in SCA children 

Figure 3b: Relationship between SVR and RBC deformability (EI) in SCC children 

 

Figure 4 

Figure 4a: Relationship between SVR and NOx in SCA children 

Figure 4b: Relationship between SVR and NOx in SCC children 
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Table 1: Hematological parameters and blood viscosity in SCD children 

 SCA 

(n = 61) 

SCC 

(n = 49) 

Hb (g.dl
-1

) 7.9 ± 1.4 11.1 ± 1.0*** 

Hct (%) 23.0 ± 4.3 31.6 ± 2.7*** 

MCV (fl) 81.9 ± 8.4 71.7 ± 5.8*** 

MCH (pg) 28.1 ± 3.2 25.3 ± 2.4*** 

RET (10
9
.l

-1
) 290 ± 117 128 ± 45*** 

RBC (10
12

.l
-1

) 2.8 ± 0.7 4.4 ± 0.5*** 

WBC (10
9
.l

-1
)  11.2 ± 2.9 7.3 ± 2.8*** 

PLT (10
9
.l

-1
) 457 ± 138 282 ± 134*** 

ηb (mPa.s
-1

)
 †
 5.5 ± 1.4 6.7 ± 1.2*** 

NOx (mol.l
-1

)
 ††

 28.5 ± 9.7 33.7 ± 10.5** 

EI (AU)
 †††

 0.38 ± 0.11 0.45 ± 0.05*** 

Values are expressed as mean ± SD. Hb (hemoglobin concentration), Hct (hematocrit), MCV 

(mean corpuscular volume), MCH (mean corpuscular hemoglobin), RET (percent of 

reticulocytes), RBC (red blood cell count), WBC (white blood cell count), PLT (platelet 

count), LDH (lactate deshydrogenase), b (blood viscosity), NOx (nitric oxide metabolites) 

and EI (elongation index = RBC deformability). Statistical difference (*p < 0.05; **p < 0.01; 

***p < 0.001). 
†
determined in 57 SCA and 47 SCC, 

††
determined in 56 SCA and 49 SCC, 

†††
determined in 58 SCA and 49 SCC. 
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Table 2: Hemodynamical parameters in SCD children 

 SCA SCC 

SBP (mmHg) 108 ± 8 107 ± 9 

DBP (mmHg) 66 ± 7 67 ± 8 

MAP (mmHg) 94 ± 7 94 ± 7 

SV (ml)
 †
 72.0 ± 19.5 57.6 ± 18.7*** 

HR (beats.min
-1

)
 †

 81 ± 10 74 ± 14* 

CI (l.min
-1

.m
-2

)
 †
 5.8 ± 1.6 4.2 ± 1.1*** 

SVR (AU)
 †

 17.4 ± 4.9 23.8 ± 5.7*** 

Values are expressed as mean ± SD. SBP (systolic blood pressure), DBP (diastolic blood 

pressure), MAP (Mean arterial pressure), SV (stroke volume), HR (heart rate), CI (cardiac 

index), SVR (systemic vascular resistance). Statistical difference (*p < 0.05; **p < 0.01; ***p 

< 0.001). 
†
determined in 49 SCA and 40 SCC 
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