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Abstract

The results from recent studies show that some benzophenones (BPs) and their hydroxylated metabolites can function as
weak estrogens (E2) in the environment. However, little is known about the structure-activity relationship of these
molecules. We have examined the effects of exposure to ten different BPs on the proliferation of estrogen receptor (ER)-
positive breast cancer cells and on the transcriptional activity of E2-target genes. We analyzed two genes that are tightly
linked with estrogen-mediated proliferation, the CXCL12 and amphiregulin genes and two classical estrogen-responsive
genes, the pS2 and progesterone receptor. Significant differences in the BPs efficiency to induce cell proliferation and
endogenous E2-target gene expressions were observed. Using ERE-, Sp1-, AP1- and C3-reporter genes that contain different
ER-binding sites in their promoter, we also showed significant differences in the BPs efficiency in activation of the ER
transactivation. Together, our analyzes showed that the most active molecule is 4-hydroxy-BP. Docking analysis of the
interaction of BPs in the ligand-binding pocket of ERa suggests that the minimum structural requirement for the estrogenic
activity of BPs is a hydroxyl (OH) group in the phenyl A-ring that allows interaction with Glu-353, Arg-394 or Phe-404, which
enhances the stability between BPs and ERa. Our modeling also indicates a loss of interaction between the OH groups of
the phenyl B-ring and His-524. In addition, the presence of some OH groups in the phenyl B-ring can create repulsion forces,
which may constrain helix 12 in an unfavorable position, explaining the differential estrogenic effects of BPs. These results,
together with our analysis of BPs for their potency in activation of cell proliferation and ER-mediated transcription, report an
improved understanding of the mechanism and structure–activity relationship of BPs.
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Introduction

During the past years, scientific works have reported a growing

concern with the increase in emerging environmental contami-

nants and their potential impact on the ecosystem and human

health [1].

Benzophenones (BPs) are organic compounds with ultraviolet

(UV) filter properties that absorb UV-A (315–400 nm) and UV-B

(280–315 nm) radiation. These chemicals are largely used in

cosmetic products, particularly sunscreens and skin lotions, but

also as additives in plastics, printing inks, shampoos, perfumes and

photographic films to prevent UV light damage. BPs have a

relatively low molecular weight and contain two phenol rings with

various hydroxyl (OH) groups (Fig. 1). The highly lipophilic

properties of BPs enable them to rapidly cross the dermal tissue,

which can cause bioaccumulation in the human body. A few hours

after application, these BP UV filters could be detected in the

plasma, bile and urine. Furthermore, some of the UV filters have

been detected in human milk [2]. UV filters were also found in the

surface water of lakes and rivers (Table 1), where they can be in

direct contact with fishes and individuals or indirectly through

wastewater treatment plants [3]. The concentration of some BPs in

sewage sludge can exceed that of polychlorinated biphenyls,

reaching 10 mg/kg of dry matter. For instance, BP-3 has been

detected at levels between 60–125 ng/L in Swiss lake water and

123–1,800 ng/g in fish lipid from perch and roach [4]. BP-4, one

of the most common UV filters in the aquatic environment in

Switzerland [3], was also found at levels up to 849 ng/L in rivers

and 1,481 ng/L in wastewater in Spain [5]. Thus, in addition to

dermal absorption, humans might also be exposed to UV filters by

eating contaminated fish or seafood.

BPs could be considered emerging environmental contaminants

because their amounts are increasing in the environment and their

activities are not yet well defined. The results of recent studies

revealed that some of these molecules act as endocrine disrupting

chemicals (EDCs). In fact, in vitro and in vivo studies in different
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Figure 1. Chemical structures of 17b-estradiol, 2-hydroxy-4-methoxy-benzophenone-5sulfonic acid and the ten benzophenone
derivatives analyzed in this study.
doi:10.1371/journal.pone.0060567.g001

Table 1. Concentrations of several BPs investigated in the environment and in human samples.

Matrix BP BP1 BP3 4BP BP8 References

Water samples
(ng/L)

Rivers 23 LOD 14 6 – [43]

LOD-24 LOD-87 – – [44]

Lakes – – 5–125 (july) – – [38]

Sea water – LOD-280 1340–3300 – LOD [45]

Raw wastewater – 31–148 184–429 – – [44]

Treated wastewater – LOD-13 LOD-84 – – [44]

Soil Samples
(ng/g)

Sewage sludge – LOD LOD-790 LOD-150 – [46]

– 4.41–91.6 2.05–13.3 2.66–10.1 LOD [47]

Sediment – 0.259–0.607 0.728–4.66 0.312–0.951 0.133–0.796 [47]

1.52–9.73 LOD LOD 18.38 0.5–2.14 [48]

Ground Soil 0.82–16.55 LOD 0.73–3.88 1.06–4.91 0.5–4.17 [48]

Human
biological
samples

Urine (ng/mL)
(Women)

– LOD-3200 LOD-5900 LOD-22 – [42]

– – 1.3–22.9 – – [49–51]

Urine (ng/mL)* – – Women: 200/Men: 300 – – [52]

– – Women: 187/Men: 238 – – [53]

Plasma (ng/mL)* – – Women: 60/Men: 140 – – [52]

– – Women: 44/Men: 81 – – [53]

Milk (ng/g lipid) – – 52.23650.69 – – [54]

LOD: below the detection limit; *Maximum median concentration observed during 96 h exposure to 10% BP3-containing sunscreen with daily whole-body application.
doi:10.1371/journal.pone.0060567.t001
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species of mammals and fish showed that some of these UV filters

exhibit hormonal activity and are able to interact with estrogen,

androgen and thyroid signaling [6–8]. In vivo studies using the

uterotrophic assay on immature rats as well as the vitellogenin

assay in fish have shown that some of the UV filters act as weak

estrogen mimics [2,9]. Long-term treatment in rats showed that

some of the UV filters also mimic the typical effects of 17-beta

estradiol (E2), including fat deposits, lipid metabolism, and delay of

puberty and decrease of prostate weight in exposed males [10].

Moreover, in vitro studies using fish and mammalian cell lines as

well as fish and human estrogen receptors (ERs) expressed in yeast

have reported direct estrogenic effects of some commonly used BP

derivatives [9,11–12]. These results have shown that the estrogenic

potencies of these compounds are much lower (up to 10,000 fold)

compared to E2 or the potent pharmaceutical estrogen ethynyl-

estradiol. Moreover, competitive ER binding assays have shown

that BPs compete with E2 binding at the ER ligand binding site.

Although this finding confirmed the relatively low affinity of BPs

for ERs, which was estimated to be 100-1,000 times lower than

that of the natural ligand, these analyses suggested the direct

actions of BPs via ERs.

ERs mediate the multiple cellular effects of estrogens by diverse

transcriptional mechanisms that are the first steps toward cell

phenotypic changes. In the classical pathway, ERs regulate the

expression of E2-target genes by direct interaction with a specific

DNA sequence in the promoter of E2-target genes, the Estrogen

Response Element (ERE). This ER-DNA interaction permits the

recruitment of the cofactors that are necessary for transcription.

However, for a number of important E2-sensitive genes, which do

not contain the ERE, ERs can also regulate transcription through

protein–protein interactions with transcription factors already

bound to the promoter, such as stimulating protein 1 (Sp1) or

activator protein 1 (AP1) [13–15]. Furthermore, it is believed that

ERs change from an inactive state to a transcriptionally active

form through an allosteric ligand-inducing conformational change

[16,17]. The carboxy-terminal or ligand-binding domain of ERs is

composed of 12 individual alpha helices (H1 to H12). In the ER-

ligand complex, the ligand interacts with the ligand-binding pocket

formed by helix H3, H4, H5 and H12. The precise positioning of

H12 is essential for cofactor recruitment and transcriptional

activity of the ERs. Thus, mechanisms governing the expression of

E2-target genes and recruitment of specific cofactors involve both

the promoter context and ER ligands.

Previous studies have reported estrogenic/anti-estrogenic activ-

ity as well as ERa/ERb selectivity of some BP derivatives [11,12],

but their direct effects on structurally different E2-target genes

have not been fully explored. Moreover, little is known about their

potential impact in breast cancer cell growth. Thus, the assessment

of estrogenic potencies of BPs in breast cancer cells in relation to

the ER transactivation requires further analysis. In this study, we

examined the effects of 10 BPs (Fig. 1) on the proliferation of

breast cancer cells and on structurally different ER-target gene

transcription in MCF-7 breast cancer cells. We found that BPs

exhibit a differential activation of E2-target genes, including

endogenous genes (CXCL12, amphiregulin, pS2 and Progesterone

Receptor) and ERE-, SP1-, AP1- and C3-reporter genes. Our

docking study by computer simulation of the interaction of BPs

with the ligand binding pocket of ERa suggests that unlike E2, BPs

do not interact with His-524, but only with Arg-394 and Glu-353

(H-bond interaction) and Phe-404 (p-p interaction). However, an

alternative H-bond interaction with Thr-347 on helix 3 is observed

with some B-ring hydroxylated BPs. Moreover, based on

differences in the residues that interact with the ERa ligand-

binding site, BPs could lead to slight ligand-dependent conforma-

tional changes of the activated receptor, which could alter its

cofactor recruitments, transcriptional regulation and cell response.

Altogether, our results highlight the necessity to perform multiple

tests to precisely define the estrogenic potency of an environmental

compound. Finally, in regards to the proliferative effects of BPs, it

seems plausible to postulate a potential pro-carcinogenic effect of

these molecules in ERa-positive tissues.

Materials and Methods

Antibodies and Reagents
17-b-estradiol (E2), ICI182,780 (ICI), benzophenone (BP), 2,4-

dihydroxy-benzophenone (BP1), 2,29,4,49-tetrahydroxy-benzophe-

none (BP2), 2-hydroxy-4-methoxy-benzophenone (BP3), 4-hy-

droxy-benzophenone (4BP), 4,49-dihydroxy-benzophenone

(449BP), 2,29-hydroxy-4-methoxy-benzophenone (BP8), 2,3,4-tri-

hydroxy-benzophenone (234BP), 2,3,4,49-tetrahydroxy-benzophe-

none (23449BP) and 2,4,49-trihydroxy-benzophenone (THB) were

acquired from Sigma-Aldrich Co (Fig. 1).

The primary antibodies used for Western Blot analysis were

rabbit polyclonal antibodies against ERa (HC-20, sc-543) and

mouse monoclonal antibody against b-actin (AC-15, sc-69879),

acquired from Santa Cruz. The peroxidase-conjugated secondary

antibodies used were a goat anti-rabbit purchased from Pierce and

a goat anti-mouse from Santa Cruz.

Cell culture and treatments
The MCF-7 human breast cancer cell lines were purchased

from the American Type Culture Collection (Manassas, VA,

USA). MCF-7 cells were maintained in Dulbecco Modified Eagle’s

Minimal Essential Medium (DMEM, Invitrogen) containing 10%

fetal bovine serum (FBS, Sigma, St. Louis, MO, USA) and

antibiotics (Invitrogen) at 37uC in 5% CO2. Steroid treatments

were preceded with a 48 h hormone and serum-deprivation stage

in DMEM-F12 (Sigma) supplemented with 2.5% dextran treated

charcoal stripped FBS (dsFBS).

Plasmids, transient transfections and Luciferase assays
Four luciferase reporter plasmids with different estrogen-

sensitive promoters were employed in the transfection experi-

ments: an artificial promoter containing one ERE upstream of the

TK promoter (ERE-Luc) [18], the AP1-Luciferase (AP1-Luc) and

Sp1-Luciferase (Sp1-Luc), which were obtained from Panomics

(Panomics Inc, Fremont, CA), and the complement 3-Luciferase

(C3-Luc) that was described previously [19]. A CMV-bgal

expression vector (Promega) was used as an internal control.

The cells were transfected using JetPEITM as described in the

manufacturer’s protocol (Polyplus TransfectionTM). Transfections

were performed overnight with MCF-7 cells after 24 h of hormone

depletion with 200 ng of reporter gene and 25 ng of CMV-bGal

as an internal control. The cells were then treated with vehicle, E2

and BPs for 48 h. Next, the cells were lysed in Passive Lysis Buffer

(Promega), and the luciferase activity was measured using a

commercial kit (Promega). Each luciferase assay was performed in

triplicate, and the result was reproduced in at least three

independent experiments.

RT-PCR assays
Total RNA extractions were performed using TrizolTM reagent

(Invitrogen) according to the manufacturer’s recommendations.

cDNAs were obtained using MMLV reverse transcriptase

(Promega). Quantitative RT-PCRs were performed on a BioRad

MyiQ apparatus using the iQTM SYBRH Green supermix from

BioRad (BioRad, Hercules, CA, USA). The sequences of the

Benzophenone Activities in Breast Cancer Cells

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e60567



primers used for amplification of cDNA in the RT-PCR

experiments are: CXCL12, Rev: GCCTCCATGGCATACA-

TAGG, Fwd: CTCCTGGGGATGTGTAATGG; Amphiregulin,

Rev: CCTGGCTATATTGTCGATTCA, Fwd: GTATTTT-

CACTTTCCGTCTTGTTTTG; pS2, Rev: CCGAGCTCTGG-

GACTAATCA, Fwd: ACCATGGAGAACAAGGTGA; and PR,

Rev: CCCGCCGTCGTAACTTTCG, Fwd: GTGCCTAT-

CCTGCCTCTCAATC and GAPDH: rev: GAGGTCCAC-

CACCCTGTTGC, fwd: GGGCATCCTGGGCTACACTG

(Proligo Primers and Probes, Boulder, CO, USA).

Proliferation assays
MCF-7 cells were plated in 96-well plates. After 48 h of

hormone-deprivation, the cells were treated with vehicle, E2

(10214 to 1029 M) and BPs at different concentrations (1028 to

1026 M) for five days. The number of cells was measured using

methylene blue staining. Briefly, after three PBS washes, the cells

were fixed with 95% ethanol for 30 min and dried. The cells were

then incubated in a methylene blue solution (1% in borate saline

buffer) for 40 min and washed 3 times. To elute the stain, 0.1 M

NaCl was added, and the absorbance at 620 nm was measured

with an iMark Microplate Absorbance Reader (BioRad).

BrdU incorporation assays
Two thousand cells were plated in 96-well plates and treated for

48 h with vehicle, E2 and BPs at different concentrations. After

incubation for 1 h with BrdU, the cells were fixed in 90% ethanol/

5% acetic acid and permeabilized in PBS/0.3% Triton. The cells

were then incubated in 2 M NaCl at 37uC, followed by incubation

in a 0.1 M Borate Buffer (pH 8.5). After a 30 min saturation step

in PBS with 0.05% Tween20 and 2% Normal Donkey Serum, the

cells were probed using the primary antibody anti-BrdU (Abcam,

ab8152) at 37uC for 1 h. The secondary antibody used to target

anti-BrdU was a Dylight 488 labeled anti-mouse IgG (Eurobio,

072-03-18-18) for 30 min at 37uC. Finally, a Hoechst staining was

performed for 20 min at room temperature, and the results were

analyzed using a Cellomics ArrayScan VTI HCS Reader (Thermo

Fisher) in collaboration with the Impaccell technologic platform

(Rennes 1 University, Rennes, France).

Protein extraction/Western Blot
Whole cell extracts were prepared with 36 Laemmli buffer. A

sonication step was performed before protein denaturation for

5 min at 95uC. The proteins were separated on SDS polyacryl-

amide gels and transferred onto polyvinylidene difluoride mem-

branes (Millipore). The membranes were probed with specific

antibodies, and the immunocomplexes were detected with a

chemiluminescence system (Immun-Star, BioRad).

Computer-simulated ligand binding (docking)
Protein input file preparation. A clean Estradiol receptor a

input file (1ERE pdb, referred to in this paper as ER-E2) was

generated using the protein preparation wizard from Maestro

software (Maestro 8.5, academic campaign, Schrodinger website.

Available: http://www.schrodinger.com, Accessed 2013 March

11). The protein was cleaned by removing water molecules,

ligands and subunits b, c, d and f from the original ER-E2 pdb file.

Next, the bond orders were assigned, and hydrogen atoms were

added. The resulting receptor (ERa) was saved as a PDB file.

Ligand input file preparation. The ligand input structure

was generated and 3D optimized with MarvinSketch Academic

Package (MarvinSketch 5.10.0, 2012, ChemAxon website, http://

www.chemaxon.com, Accessed 2013 March 11). The ligand

structures were saved as a mol2 file.
GOLD docking protocol. For the study, the binding pocket

of the receptor was defined from the crystallographic coordinates

of the hydroxyl of estradiol. Dockings were performed using the

GOLDScore fitness function under the ’Standard default settings’

of GOLD software: a population size of 100, number of islands

was 5, number of operations was 100,000, with a niche size of 2

and a selection pressure of 1.1.

Statistical analysis
Statistical analysis was performed using Student’s t-test. The

values are provided as the mean 6 standard error of the mean

(SEM) and were considered statistically significant with p,0.05.

Results

Proliferative effects of benzophenone derivatives in ERa-
positive MCF-7 breast cancer cells

To characterize how BP derivatives impact the estrogenic

response in breast cancer cell lines, we first screened the ability of

BP derivatives to induce the proliferation of ERa-positive MCF-7

cells, which is controlled by estrogens. For this study, we chose ten

BP derivatives that differ in the number and position of hydroxyl

and/or methoxyl groups contained in their structures. Thus, we

performed a 5-day proliferation assay, which allowed us to check

the increase in cell number after treatment with different doses of

BPs (1028, 1027 and 1026 M; Fig. 2.A). As a control, we used

1028 M E2, which induced a 3.5 fold increase in cell number after

treatment. Of the 10 BPs tested, 6 were able to induce an

augmentation in cell number. Although BP and 234BP had no

significant impact on cell growth at the tested concentrations, BP2,

449BP and 4BP at 1026 M induced an increase in cell number

comparable to the E2 effect (Fig. 2.A). Moreover, 4BP was able to

induce a significant increase in cell number from 1027 M. These

proliferative effects of BPs are repressed when cells are cotreated

with 1027 M of the anti-estrogen ICI confirming that these effects

are mediated by ERs, likely ERa as MCF-7 cells express mainly

ERa. In addition, we performed a BrdU-incorporation assay to

observe the BP-induced modulation of cell percentage in S phase

(Figs. 2.B and C). The results from this approach were correlated

with the BP-induced increase in cell number observed in the

proliferation assays. Globally, the BPs can be divided into three

groups with regard to their proliferative potentials: no or little

activity (BP, BP1, BP3 and 234BP), medium activity (BP2,

23449BP and THB), and high activity (4BP, 449BP and BP8). As

a control, we measured the level of ERa protein by Western Blot

in untreated MCF-7 cells or cells treated with E2 (1028 M) or ICI

(1027 M) and the different BPs (1026 M) for 24 h. As shown in

Fig. 2.D, the protein levels of ERa is drastically decreased after

exposure to ICI but remained similar to the control after the

exposure of MCF-7 cells to the different BPs. This indicates that

proliferative effects observed upon BP treatments are not due to a

consequence of changes in the level of intracellular ERa
expression.

Altogether, these data are evidence of a proliferative effect of

several BP derivatives in the MCF-7 ERa-positive breast cancer

line, with the maximum mitogenic potential exhibited by 4BP

(Table 2).

Differential activation of estrogen-target genes by
benzophenone derivatives

As some BP derivatives are able to induce mammary cancer cell

proliferation, we performed RT-PCR to assay the ability of BP

Benzophenone Activities in Breast Cancer Cells
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derivatives to induce the expression of several estrogen-regulated

genes, focusing on two genes that are tightly linked with estrogen-

mediated proliferation, the CXCL12 and amphiregulin genes [20–

22] (Figs. 3.A and B). Additionally, we also tested two classical

estrogen-responsive genes, the pS2 (also known as trefoil factor 1,

tff1) gene and Progesterone Receptor (PR) gene (Figs. 3.C and D).

The results were obtained after 24 h of exposure of MCF-7 cells to

increasing concentrations of each BP (1028, 1027 and 1026 M). In

addition, cells were also cotreated with 1026 M BPs and 1027 M

ICI at the same time. All of the tested BPs failed to induce strong

expression of CXCL12 gene, except 4BP. Nevertheless, BP2,

449BP, BP8 and 23449 significantly stimulated the expression of

CXCL12, but the expression was ,3 fold weaker amplitude than

E2. The expression of the amphiregulin gene was significantly

Figure 2. Proliferative effects of BPs in MCF-7 breast cancer cells. (A) After 48 h of steroid deprivation, MCF-7 cells were cultured in medium
containing 2.5% dextran-treated charcoal stripped FBS and treated during 5 days with vehicle, 1028 M estradiol (E2) or different concentrations of BPs
(1028, 1027 and 1026 M). In addition, cells were treated with 1027 M of the anti-estrogen ICI182,780 (ICI) alone or in combination with 1028 M E2
(hatched bar) or 1026 M of each one of the BPs (open bars). Cell growth was evaluated using methylene blue assays and the results were expressed
as fold induction between treated cells and vehicle-treated cells (considered as one-fold induction). (B and C) As in panel A, MCF-7 cells were
cultured in medium containing 2.5% dextran-treated charcoal stripped FBS and treated with different concentrations of estradiol (10212, 10211,
10210 M, illustrated by color gradations) or different concentrations of BPs (1028, 1027 and 1026 M, illustrated by color gradations). The percentage
of cells in S phase was evaluated 48 hours later using BrdU incorporation assays. Data are the mean values from triplicate experiments 6 SEM
(* P,0.05, **P,0.01, ***P,0.001). (D) Equal amounts of whole cell extracts from MCF-7 cells were loaded on denaturing gels. The ERa and b-actin
protein levels were detected with specific antibodies as described in the Materials and Methods.
doi:10.1371/journal.pone.0060567.g002
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induced by six of the ten BPs, including THB that did not induce

the CXCL12 gene. 4BP-induced expression of this gene was

comparable with that of E2. Except for the parental BP, all BP

derivatives resulted in at least a 4-fold induction of pS2 gene

expression at a concentration of 1 mM. At this concentration, 4BP,

449BP, BP8 and THB induced expression of pS2 in the same

range as E2. For the PR gene, only 4BP and BP8 succeeded in

inducing mRNA expression more than 10 fold relative to the

control. In contrast, the treatment of the cells with BP1, BP2,

449BP, 23449BP and THB did not result in more than a 4–5 fold

induction. For all the tested genes, the pure anti-estrogen ICI

repressed the BP-mediated activation of E2-target genes, demon-

strating that BP-induced transcription of these genes is mediated

by ERs (Fig. 3).

To determine if a correlation exists between the transcriptional

effect of BPs and their proliferative effect, we performed Pearson’s

tests. According to this test, a good correlation coefficient exists for

both CXCL12 and amphiregulin gene inductions and cell

proliferation (rp = 0.8236 with a p-value = 0.00099 and

rp = 0.8845 with a p-value = 0.00013, respectively). In contrast,

the induction of pS2 and PR genes exhibited poor correlation

with BP-induced proliferation (rp = 0.597 and 0.467 with

p-values = 0.04 and 0.125, respectively).

Except for 4BP, which induced the expression of the four E2-

target genes with a fold-induction comparable to that observed

with estrogen, and the parental BP, which had no effect, the effects

of the other BPs were more dependent on the tested genes. For

instance, THB and 449BP were found to be as potent as E2 in

inducing pS2 expression, and they showed weak effects on the

expression of the CXCL12, amphiregulin and PR genes. Although

BP3 had weak estrogenic activity on the pS2 gene, it was

inefficient in stimulating CXCL12, PR and amphiregulin gene

Figure 3. Evaluation of BP-induced expression of several endogenous estrogen-regulated genes. After hormone deprivation for 24 h,
MCF-7 cells were grown in medium containing 2.5% dextran-treated charcoal stripped FBS and treated with 1028 M E2 or different concentrations of
BPs (1028, 1027 and 1026 M, illustrated by color gradations) for 48 h. In addition, treatments to 1026 M BPs were also performed in presence of
1027 M of the anti-estrogen ICI182,780 (ICI) (open bars for BP + ICI treatments and hatched bar for E2 + ICI treatment). The expression levels of several
E2-regulated genes, (A) CXCL12, (B) Amphiregulin, (C) pS2 and (D) Progesterone Receptor (PR), after the treatments were quantified using real-time
PCR. Data are the mean values from triplicate experiments 6 SEM (* P,0.05, **P,0.01, ***P,0.001).
doi:10.1371/journal.pone.0060567.g003
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expressions. These results suggest that the promoter context that

controls the transcriptional activity of a specific gene plays an

important role in the selective action of BPs.

To further study this selectivity of BPs in transcriptional

activation, we performed luciferase assays and examined the

impact of BPs on the induction of several structurally different

reporter genes (Fig. 4). ERa is able to enhance the transcription of

estrogen-target genes by direct interaction with ERE or indirectly

through complexes formed at Sp1- or AP1-binding sites [15].

Therefore, we used a reporter gene containing a consensus ERE

(ERE-Luc), classically used to assay estrogenic potencies of EDCs,

and reporter genes containing Sp1 or AP1 response elements (Sp1-

Luc and AP1-Luc). Additionally, we tested the ability of BPs to

induce the transcription of a complement 3-promoter containing

reporter gene (C3-Luc), which is a reporter gene known to mainly

exhibit sensitivity to AF1-dependent stimulation [19,23]. After

transfection, the cells were treated with E2 or increasing

concentrations of BPs (1028, 1027 and 1026 M) for 48 h, and

then, the luciferase activities were determined. Except for BP and

BP3, all the BPs were able to induce the activity of the ERE-Luc at

a concentration of 1 mM, through an ER-dependent mechanism

as these inductions were abolished by treatments with ICI.

However, only BP2, 4BP, BP8 and THB exhibited significant

activity at 0.1 mM (Fig. 4.A). Nevertheless, even if these four BP

derivatives strongly induced the ERE- reporter gene, they did not

reach the maximal transactivation efficiency as observed with

1028 M E2. For the activation of Sp1-Luc, 1 mM of each of the

following BP2, 4BP, 449BP and THB were as potent as 10 nM E2.

As observed with the ERE-Luc, BP, BP3, 234BP and 23449BP

were weakly active or not active on the Sp1-Luc reporter gene. In

contrast, BP8, which was among the most estrogenic compounds

with regard to the ERE-Luc reporter gene, was inefficient in the

activation of Sp1-Luc (Fig. 4.B). On the other hand, BP1 and

449BP were more effective on Sp1-Luc than on ERE-Luc.

Figure 4. Estrogenic activity of BP derivatives using structurally different luciferase reporter assays in MCF-7 cells. Cells were
transiently transfected with 100 ng of the reporter gene (ERE-Luc (A), Sp1-Luc (B), AP1-Luc (C) or C3-Luc (D) and 25 ng of the internal control CMV-
bgal. Cells were treated for 36 h with vehicle, 1028 M E2 or different concentrations of BPs (1028, 1027 and 1026 M, illustrated by color gradations). In
the panel A, transfected cells with the ERE-Luc were also treated with 1027 M of the anti-estrogen ICI182,780 (ICI) alone or in combination with 1026 M
of each one of the BPs (open bars) or with 1028 M E2 (hatched bar). Luciferase activities were normalized to b-galactosidase and expressed as the fold
increase above vehicle alone. Each value represents the mean 6 SD of at least three experiments (*P,0.05, **P,0.01, ***P,0.001, compared with
control).
doi:10.1371/journal.pone.0060567.g004
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Surprisingly, none of BP derivatives were found to exhibit

estrogenic activities on the AP1-Luc reporter gene (Fig. 4.C).

Finally, the transcriptional response of the C3-Luc reporter gene

resulted in a profile comparable with the ERE-Luc, but with lower

fold inductions than those obtained with E2 treatment (Fig. 4.D).

This result suggests that the estrogenic effects of BPs are mainly

due to the activation of the AF-2 transactivation function of ERa.

Collectively, these data confirm the estrogenicity of BPs at the

transcriptional level and indicate that BPs possess a selectivity of

action depending on the promoter contexts and on estrogen-target

genes despite their similar structures (Table 2). These observations

suggest that the structure of these compounds, especially the

hydroxyl groups, is central in defining the estrogenic targets at the

transcriptional level and the amplitude of the estrogenic response.

Docking analysis of BP derivatives in the binding site of
ERa

To better understand the selective estrogenic activities of BPs,

we investigated how BPs interact in the ligand binding pocket of

ERa, as the addition of hydroxyl groups is known to facilitate

hydrogen bonding. Indeed, improper interactions of these

compounds could be able to favor a different conformation of

ERa from the E2-induced conformation, resulting in slight

differences in the biologic effects. The dockings of six represen-

tative BP derivatives in the binding site of ERa, as well as the

docking of E2, are shown in Fig. 5.

In the ER crystal structure, E2 establishes Hydrogen-bonding

(H-bond) interactions between its A-ring and the Glu-353 and

Arg-394 from ERa. An additional H-bond between the D-ring

and His-524 stabilizes the structure. With most of the BPs, only the

H-bonds with Glu-353 and Arg-394 are maintained and the H-

bond with His-524 is lost. If the second aromatic ring of the BPs is

hydroxylated in the correct position, an alternative H-bond with

Thr-347 (within helix 3) can form, as observed with BP3 and

THB. Moreover, van der Waals interactions between the

hydrophobic residues in the ligand-binding pocket of ERa
(Fig. 5, top 2D structure) and the phenyl rings of E2 creates a

favorable surface (helix 12) in the ligand-binding pocket of ER that

allows it to interact with transcriptional coactivators. Hence, in a

proper agonist-conformation of the ER 3D structure, the Leu-540

(within helix 12) and Leu-525 (helix 11) interact by hydrophobic

bonding, stabilizing the structure of helix 12 in an activated form

(Fig. 6.A). Interestingly, our analysis indicates that BP derivatives

without a hydroxyl in the second aromatic ring, such as 4BP, could

increase the hydrophobic bonding and favor the proper position-

ing of helix 12 (Fig. 6.B). Inversely, a BP derivative with a polar

hydroxyl in the second aromatic ring, such as THB, could

decrease the hydrophobic bonding and cause improper positioning

of helix 12 due to steric hindrance (Fig. 6.C).

Discussion

BP and its hydroxylated derivatives are widely used in industry

as UV filters for sunscreens, inks and plastic packaging. In this

study, we analyzed the estrogenic potencies of ten UV filters from

the BP family on several biological responses induced by estrogens,

including proliferation, transcription and binding to the estrogen

receptor. This study was conducted in vitro in a mammary cancer

cell context because very few studies have demonstrated the

estrogenic impact of BPs on breast cancer with regard to

proliferation. Furthermore, the comparison of the estrogenic

activities of BPs with very close structures that only differ in the

position and number of hydroxyl or methoxyl groups highlights

the importance of the ligand structure for the specificity of the

estrogenic response.

In light of our results, some BPs were able to exhibit estrogenic

activities in MCF-7 cells, including proliferation, at concentrations

of the order of micromolar and lower (Table 2). To our

knowledge, this is the first study reporting the proliferative effects

of these 10 BP derivatives, as well as their estrogenic effect on

structurally different E2-target genes. Of the 10 BPs, 6 were able to

significantly stimulate the proliferation of MCF-7 breast cancer

cells. Listed in order of decreasing potency, they are

4BP.449BP.BP8.23449BP.BP2.THB. In contrast, BP, BP1,

BP3 and 234BP exhibited very low or no induction of

proliferation. In agreement with several other reports [24,25],

we found that BP3, one of the most studied and common BPs,

cannot induce proliferation or E2-dependent transcriptional

activity. However, studies of BP3 metabolism in rats have revealed

that BP3 can be converted into at least three metabolites that

exhibit estrogenic potencies, BP1, BP8 and THB [24,26]. Our

results indicate that BP-induced CXCL12 and amphiregulin gene

expression correlates well with the BP proliferative effects,

indicating that analysis of these genes could be an alternative

and early method for the assessment of the proliferative impact of

estrogenic compounds. This is also in good agreement with our

previous reports [20,31]. In contrast, we have found very poor

correlation between the proliferation and expression of the

commonly used E2-target genes pS2 and PR, which are not

directly involved in the processes of proliferation. Thus, ER-

mediated regulation of CXCL12 and amphiregulin could involved

molecular mechanisms distinct from pS2 and PR, explaining a

better correlation of CXCL12 and amphiregulin expression with

cell proliferation.

In addition, our study highlights the necessity to perform several

tests to clearly characterize the estrogenicity of compounds.

Numerous tests have been developed to assay the estrogenic

potencies of environmental contaminants based on whole organ-

isms [27,28], cell systems [29–31] or biochemical approaches [32].

However, one type of test is likely not sufficient to define a

xenoestrogen, as various ligands can exhibit species- and cell type-

specific activities and result in differential recruitment of the ER

and cofactors [33]. Thus, estrogenic abilities based on one

parameter may not reflect a physiological response, as exemplified

by the 23449BP- and THB-induction profile of the pS2 gene or the

ERE-Luc reporter gene that do not result in a corresponding

proliferation profile.

Our examination of the effect of BP derivatives on ER-mediated

transcription at different ER-binding sites showed that a great

diversity exists in the ligand responsiveness on E2-target genes and

depends on the ER-binding site properties. Although the reporter

gene containing an ERE sequence was the most responsive gene to

BP derivatives, none of these chemicals were able to activate the

AP1 promoter. Moreover, regarding the C3 promoter, the BP

derivatives showed weak estrogenic activity and none acted as a

full agonist, suggesting that only the AF2 transactivation function

of the receptor is activated. Collectively, these data suggest that

different types of ER-binding sites within endogenous gene

promoters may be responsible for the differential activation of

E2-target genes by BPs. Accordingly, because the ER-binding sites

are decisive parameters in the transactivation potency of ER

bound BP derivatives, some of these chemicals may be used as a

selective ligand to differentially activate E2-target gene popula-

tions. However, further investigation is necessary to describe the

molecular mechanisms and the molecular pathways involved in

these phenomena in more detail.
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Confirming observations from another team [25], we found that

the core BP molecule has no estrogenic activity, and addition of a

hydroxyl group on one of the phenyl rings is essential for a

maximum estrogenic activity, as exemplified by 4-hydroxy-

benzophenone (4BP), which exhibits estrogenic potency and

differs from BP by one hydroxyl group (Table 2). Indeed, docking

experiments highlighted the necessity of a hydroxyl group to

permit the proper interaction of the BPs in the ERa ligand-binding

Figure 5. Docking views of BPs in the ERa ligand binding pocket. 3D and 2D docking views of E2, BP2, BP3, 4BP, BP8 and 234BP are shown.
For the 3D views, only the H-bonds are shown, whereas the 2D views show H-bonds and p-p interactions. Phe: Phenylalanine, Met: Methionine, Arg:
Arginine, Leu: Leucine, His: Histidine, Thr: Threonine, Glu: Glutamic acid, Ile: Isoleucine, Ala: Alanine, Gly: Glycine.
doi:10.1371/journal.pone.0060567.g005
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pocket (Fig. 5). Additional hydroxyl or methoxyl groups could alter

the way molecules interact in the ligand-binding pocket, altering

subsequent biological responses. A hydroxyl group on carbon 4 of

the phenyl A-ring is ideal because it allows BPs to interact with

Arg-394 and Glu-353, enhancing stability between the BPs and

ERa. However, our docking analysis suggests that some BPs, such

as BP8, which has a hydroxyl group on carbon 2, can only interact

with Glu-353 via its OH group, which may create a weaker

interaction, explaining the variability observed in its estrogenic

capability. On the other hand, BP3 possesses a hydroxyl group on

carbon 2 of the phenyl ring that also carries a methoxyl group on

carbon 4, and BP3 exhibits very little estrogenic activity as

compared to other BPs tested in our study. These results are also

consistent with our docking experiments that failed to find a stable

orientation and position of BP3 in the ligand binding pocket of

ERa. This could be due to steric hindrance induced by the

methoxyl group of BP3 or the intramolecular bonding between the

hydroxyl group on carbon 2 and the carbonyl group. In addition,

OH groups on the B-ring could also establish H-bonds with Thr-

347, inducing changes in the 3D structure of the ERa and

contributing to the differential action of the BP derivatives. These

interactions have been recently described for two major environ-

mental pollutants, bisphenol A [34] and polychlorinated biphenyl

(PCB) [35].

The interaction of E2 with ERa induces an agonist conforma-

tional change in the ligand-binding pocket of the receptor, which

was reported to be critical for accurate positioning of helix 12 and,

consequently, for the transactivation function of AF2. Based on the

structural studies, the phenyl ring of E2 interacts with Leu-540

(helix 12) and Leu-525 (helix 11) through hydrophobic bonding.

Moreover, the presence of E2 in the ligand-binding pocket forces

Leu-544 (helix 12) and Leu-525 to interact through van der Waals

interactions, forming a stable and suitable conformation. Thus,

OH groups in the phenyl B-ring of BPs may create a repulsion

force which constrains helix 12 in an unfavorable position.

Interestingly, our modeling suggests that 4BP could favor

hydrophobic interactions. In contrast, the hydroxyl group of the

phenyl B-ring of THB could disrupt either the hydrophobic

bonding with Leu-540 and Leu-525 or the van der Waals

interactions between Leu-525 and Leu-544. For instance, the

selective ER modulator (SERM) Lasofoxifene was reported to

induce a different rotamer of Leu-525 due to the close contact

between Leu-525 and an oxygen atom in the compound,

abolishing van der Waals interactions between Leu-525 and

Leu-544 [36]. Therefore, based on differences in the residues of

the ERa ligand-binding site, BPs could lead to slightly different

ligand-dependent conformational changes of the activated recep-

tor, which could alter the receptor’s ability in cofactor recruit-

ments, transcriptional regulation and cell response.

Only a few BP UV filters have been investigated in the

environment to date. However, several BPs have been found at

different concentrations in several matrixes, notably in aquatic

Figure 6. Cylinder representations of the interaction of E2, 4BP and THB in the E2-liganded-ERa crystal structure. The Leu-525 (in
green) of helix 11, and Leu-540 and Leu-544 (in purple) of helix 12 are shown. In the correct ER 3D structure, these leucines interact with E2 through
hydrophobic bonding, stabilizing the structure of helix 12 in an activated form. With 4BP, these interactions are still possible, whereas with THB, the
hydroxyl group (in red) can interfere and destabilize the structure. Arg: Arginine, Leu: Leucine, His: Histidine, Thr: Threonine, Glu: Glutamic acid.
doi:10.1371/journal.pone.0060567.g006
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environments including lakes, wastewater or swimming pool

water, as well as in sediment, sewage sludge and soil (Table 1).

In addition, BPs have also been detected in numerous biological

samples, such as fish fat, urine or milk [2]. Hayashi and coworkers

have demonstrated that BP can be converted into 4BP after

exposure to sunlight [37]. This finding is consistent with the

potential danger associated with using a BP-containing sunscreen

that can produce highly estrogenic compounds that are in direct

contact with the skin. BPs are highly lipophilic and are assumed to

bioaccumulate in humans and wildlife [38]. Moreover, during the

summer, a large portion of skin (up to 75%) is treated daily or

twice a day with sunscreens [39], and these UV filters are

absorbed by the skin and enter the human body [40,41].

Considering our results, direct application of BP-based sunscreen

on the breast and the subsequent skin absorption could favor the

proliferation of ERa-positive epithelial cells, increasing the

probability of developing a breast cancer or stimulating the

growth and progression of a pre-existing tumor. A recent study has

revealed a potential association between the urinary concentration

of some BP derivatives and another estrogen-dependent disease,

endometriosis [42]. Nevertheless, more studies should be con-

ducted to shed light on the possible correlation between BP

exposure and breast cancer.
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