M. Wegner, Secrets to a healthy Sox life: lessons for melanocytes, Pigment Cell Research, vol.36, issue.2, pp.74-85, 2005.
DOI : 10.1111/j.1600-0749.2005.00218.x

L. Douarin, N. M. Kalcheim, and C. , The neural crest.(Cambridge, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00115827

D. Lang and J. A. Epstein, Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer, Human Molecular Genetics, vol.12, issue.8, pp.937-945, 2003.
DOI : 10.1093/hmg/ddg107

R. Mollaaghababa and W. J. Pavan, The importance of having your SOX on: role of SOX10??? in the development of neural crest-derived melanocytes and glia, Oncogene, vol.22, issue.20, pp.3024-3034, 2003.
DOI : 10.1038/sj.onc.1206442

L. Zhu, H. O. Lee, C. S. Jordan, V. A. Cantrell, E. M. Southard-smith et al., Spatiotemporal regulation of endothelin receptor-B by SOX10 in neural crest???derived enteric neuron precursors, Nature Genetics, vol.126, issue.7, pp.732-737, 2004.
DOI : 10.1172/JCI200215043

V. Pingault, D. Ente, F. Dastot-le-moal, M. Goossens, S. Marlin et al., Review and update of mutations causing Waardenburg syndrome, Human Mutation, vol.56, issue.6, pp.391-406, 2010.
DOI : 10.1002/humu.21211

URL : https://hal.archives-ouvertes.fr/inserm-00483195

V. Pingault, N. Bondurand, K. Kuhlbrodt, D. E. Goerich, M. O. Prehu et al., SOX10 mutations in patients with Waardenburg-Hirschsprung disease, Nature Genetics, vol.7, issue.2, pp.171-173, 1998.
DOI : 10.1038/ng0198-60

K. Inoue, M. Khajavi, T. Ohyama, S. Hirabayashi, J. Wilson et al., Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations, Nature Genetics, vol.36, issue.4, pp.361-369, 2004.
DOI : 10.1038/ng1322

N. Bondurand, F. Dastot-le-moal, L. Stanchina, N. Collot, V. Baral et al., Deletions at the SOX10 Gene Locus Cause Waardenburg Syndrome Types 2 and 4, The American Journal of Human Genetics, vol.81, issue.6, pp.1169-1185, 2007.
DOI : 10.1086/522090

URL : https://hal.archives-ouvertes.fr/inserm-00196715

C. P. Barnett, R. Mendoza-londono, S. Blaser, J. Gillis, L. Dupuis et al., Aplasia of cochlear nerves and olfactory bulbs in association with SOX10 mutation, Am J Med Genet A, vol.149, pp.431-436, 2009.

L. Teixeira, F. Guimiot, C. Dode, C. Fallet-bianco, R. P. Millar et al., Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions, Journal of Clinical Investigation, vol.120, issue.10, pp.3668-3672, 2010.
DOI : 10.1172/JCI43699DS1

C. Dode and J. P. Hardelin, Kallmann syndrome, European Journal of Human Genetics, vol.14, issue.2, pp.139-146, 2009.
DOI : 10.1159/000152034

URL : https://hal.archives-ouvertes.fr/inserm-00836181

S. Britsch, D. E. Goerich, D. Riethmacher, R. I. Peirano, M. Rossner et al., The transcription factor Sox10 is a key regulator of peripheral glial development, Genes & Development, vol.15, issue.1, pp.66-78, 2001.
DOI : 10.1101/gad.186601

N. Bondurand, D. Natarajan, N. Thapar, C. Atkins, and V. Pachnis, Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures, Development, vol.130, issue.25, pp.6387-6400, 2003.
DOI : 10.1242/dev.00857

A. Kurtz, A. Zimmer, F. Schnutgen, G. Bruning, F. Spener et al., The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development, Development, vol.120, pp.2637-2649, 1994.

M. Schwanzel-fukuda, D. Bick, and D. W. Pfaff, Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome, Molecular Brain Research, vol.6, issue.4, pp.311-326, 1989.
DOI : 10.1016/0169-328X(89)90076-4

N. Bondurand, M. Girard, V. Pingault, N. Lemort, O. Dubourg et al., Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10, Human Molecular Genetics, vol.10, issue.24, 2001.
DOI : 10.1093/hmg/10.24.2783

N. Bondurand, V. Pingault, D. E. Goerich, N. Lemort, E. Sock et al., Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome, Human Molecular Genetics, vol.9, issue.13, pp.1907-1917, 2000.
DOI : 10.1093/hmg/9.13.1907

A. Sanchez-mejias, Y. Watanabe, R. , M. F. Lopez-alonso, M. Antinolo et al., Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient, Journal of Molecular Medicine, vol.277, issue.5, pp.507-514, 2010.
DOI : 10.1007/s00109-010-0592-7

URL : https://hal.archives-ouvertes.fr/inserm-00481710

S. E. Leblanc, S. W. Jang, R. M. Ward, L. Wrabetz, and J. Svaren, Direct Regulation of Myelin Protein Zero Expression by the Egr2 Transactivator, Journal of Biological Chemistry, vol.281, issue.9, pp.5453-5460, 2006.
DOI : 10.1074/jbc.M512159200

H. Zhang, H. Chen, H. Luo, J. An, L. Sun et al., Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II, Human Genetics, vol.56, issue.5, pp.491-503, 2012.
DOI : 10.1007/s00439-011-1098-2

R. I. Peirano, D. E. Goerich, D. Riethmacher, and M. Wegner, Protein Zero Gene Expression Is Regulated by the Glial Transcription Factor Sox10, Molecular and Cellular Biology, vol.20, issue.9, pp.3198-3209, 2000.
DOI : 10.1128/MCB.20.9.3198-3209.2000

A. Chaoui, Y. Watanabe, R. Touraine, V. Baral, M. Goossens et al., missense mutations in different subtypes of waardenburg syndrome, Human Mutation, vol.36, issue.12, pp.1436-1449, 2011.
DOI : 10.1002/humu.21583

URL : https://hal.archives-ouvertes.fr/inserm-00655828

N. Guex and M. C. Peitsch, SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling, Electrophoresis, vol.23, issue.15, pp.2714-2723, 1997.
DOI : 10.1002/elps.1150181505

L. Jiang, H. Chen, W. Jiang, Z. Hu, L. Mei et al., Novel mutations in the SOX10 gene in the first two Chinese cases of type IV Waardenburg syndrome, Biochemical and Biophysical Research Communications, vol.408, issue.4, pp.620-624, 2011.
DOI : 10.1016/j.bbrc.2011.04.072

Y. Sznajer, C. Coldea, F. Meire, I. Delpierre, T. Sekhara et al., A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease, Am J Med Genet A, vol.146, pp.1038-1041, 2008.

P. E. Forni, C. Taylor-burds, V. S. Melvin, T. Williams, and S. Wray, Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH, 2011.

H. Katoh, S. Shibata, K. Fukuda, M. Sato, E. Satoh et al., The dual origin of the peripheral olfactory system: placode and neural crest, Molecular Brain, vol.4, issue.1, p.34, 2011.
DOI : 10.1016/0896-6273(93)90124-A

J. A. Ekberg, D. Amaya, A. Mackay-sim, S. John, and J. A. , The Migration of Olfactory Ensheathing Cells during Development and Regeneration, Neurosignals, vol.20, issue.3, pp.147-158, 2012.
DOI : 10.1159/000330895

R. Quinton, V. M. Duke, A. Robertson, J. M. Kirk, G. Matfin et al., Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic characterization*, Clinical Endocrinology, vol.292, issue.2, pp.163-174, 2001.
DOI : 10.1038/372635a0

C. Dode, C. Fouveaut, G. Mortier, S. Janssens, J. Bertherat et al., NovelFGFR1 sequence variants in Kallmann syndrome, and genetic evidence that the FGFR1c isoform is required in olfactory bulb and palate morphogenesis, Human Mutation, vol.28, issue.1, pp.97-98, 2007.
DOI : 10.1002/humu.9470

C. Dode, J. Levilliers, J. M. Dupont, A. De-paepe, L. Du et al., Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome, Nature Genetics, vol.33, issue.4, pp.463-465, 2003.
DOI : 10.1038/ng1122

J. Falardeau, W. C. Chung, A. Beenken, T. Raivio, L. Plummer et al., Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice, Journal of Clinical Investigation, vol.118, issue.8, pp.2822-2831, 2008.
DOI : 10.1172/JCI34538

N. Massin, C. Pecheux, C. Eloit, J. L. Bensimon, J. Galey et al., Gene, The Journal of Clinical Endocrinology & Metabolism, vol.88, issue.5, 2003.
DOI : 10.1210/jc.2002-021981

D. Soderlund, P. Canto, and J. P. Mendez, Identification of Three Novel Mutations in the KAL1 Gene in Patients with Kallmann Syndrome, The Journal of Clinical Endocrinology & Metabolism, vol.87, issue.6, pp.2589-2592, 2002.
DOI : 10.1210/jcem.87.6.8611

E. B. Trarbach, A. P. Abreu, L. F. Silveira, H. M. Garmes, M. T. Baptista et al., Gene Causing Different Degrees of Human Gonadotropin-Releasing Deficiency, The Journal of Clinical Endocrinology & Metabolism, vol.95, issue.7, pp.3491-3496, 2010.
DOI : 10.1210/jc.2010-0176

M. J. Lee, E. Calle, A. Brennan, S. Ahmed, E. Sviderskaya et al., In early development of the rat mRNA for the major myelin protein P0 is expressed in nonsensory areas of the embryonic inner ear, notochord, enteric nervous system, and olfactory ensheathing cells, Developmental Dynamics, vol.40, issue.1, pp.40-51, 2001.
DOI : 10.1002/dvdy.1165

R. I. Peirano and M. Wegner, The glial transcription factor Sox10 binds to DNA both as monomer and dimer with different functional consequences, Nucleic Acids Research, vol.28, issue.16, pp.3047-3055, 2000.
DOI : 10.1093/nar/28.16.3047

S. Malki, B. Boizet-bonhoure, and F. Poulat, Shuttling of SOX proteins, The International Journal of Biochemistry & Cell Biology, vol.42, issue.3, pp.411-416, 2009.
DOI : 10.1016/j.biocel.2009.09.020

URL : https://hal.archives-ouvertes.fr/hal-00463200

M. Maka, C. C. Stolt, and M. Wegner, Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect, Developmental Biology, vol.277, issue.1, pp.155-169, 2005.
DOI : 10.1016/j.ydbio.2004.09.014

S. Reiprich, C. C. Stolt, S. Schreiner, R. Parlato, and M. Wegner, SoxE Proteins Are Differentially Required in Mouse Adrenal Gland Development, Molecular Biology of the Cell, vol.19, issue.4, pp.1575-1586, 2008.
DOI : 10.1091/mbc.E07-08-0782

C. C. Stolt, P. Lommes, R. P. Friedrich, and M. Wegner, Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy, Development, vol.131, issue.10, pp.2349-2358, 2004.
DOI : 10.1242/dev.01114

K. A. Dutton, A. Pauliny, S. S. Lopes, S. Elworthy, T. J. Carney et al., Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates, Development, vol.128, pp.4113-4125, 2001.

R. P. Kapur, Early Death of Neural Crest Cells Is Responsible for Total Enteric Aganglionosis in Sox10 Dom / Sox10 Dom Mouse Embryos, Pediatric and Developmental Pathology, vol.2, issue.6, pp.559-569, 1999.
DOI : 10.1007/s100249900162

C. Paratore, D. E. Goerich, U. Suter, M. Wegner, and L. Sommer, Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling, Development, vol.128, pp.3949-3961, 2001.

E. Sonnenberg-riethmacher, M. Miehe, C. C. Stolt, D. E. Goerich, M. Wegner et al., Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10, Mechanisms of Development, vol.109, issue.2, pp.253-265, 2001.
DOI : 10.1016/S0925-4773(01)00547-0

E. M. Southard-smith, L. Kos, and W. J. Pavan, SOX10 mutation disrupts neural crest development in Dom Hirschsprung mouse model, Nature Genetics, vol.225, issue.1, pp.60-64, 1998.
DOI : 10.1038/ng0198-60

Z. Su and C. He, Olfactory ensheathing cells: Biology in neural development and regeneration, Progress in Neurobiology, vol.92, issue.4, pp.517-532, 2010.
DOI : 10.1016/j.pneurobio.2010.08.008

S. Wray, From Nose to Brain: Development of Gonadotrophin-Releasing Hormone -1 Neurones, Journal of Neuroendocrinology, vol.25, issue.7, pp.743-753, 2010.
DOI : 10.1111/j.1365-2826.2010.02034.x

I. Breuskin, M. Bodson, N. Thelen, M. Thiry, L. Borgs et al., Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti, Developmental Biology, vol.335, issue.2, pp.327-339, 2009.
DOI : 10.1016/j.ydbio.2009.09.007

K. Watanabe, K. Takeda, Y. Katori, K. Ikeda, T. Oshima et al., Expression of the Sox10 gene during mouse inner ear development, Molecular Brain Research, vol.84, issue.1-2, pp.141-145, 2000.
DOI : 10.1016/S0169-328X(00)00236-9

I. Breuskin, M. Bodson, N. Thelen, M. Thiry, L. Borgs et al., Glial but not neuronal development in the cochleo-vestibular ganglion requires Sox10, Journal of Neurochemistry, vol.65, issue.6, pp.1827-1839, 2010.
DOI : 10.1111/j.1471-4159.2010.06897.x

N. Janssen, J. E. Bergman, M. A. Swertz, L. Tranebjaerg, M. Lodahl et al., Mutation update on the CHD7 gene involved in CHARGE syndrome, Human Mutation, vol.152, issue.8, pp.1149-1160, 2012.
DOI : 10.1002/humu.22086

J. E. Bergman, W. De-ronde, M. C. Jongmans, B. H. Wolffenbuttel, S. L. Drop et al., Analysis in Clinically Well-Characterized Patients with Kallmann Syndrome, The Journal of Clinical Endocrinology & Metabolism, vol.97, issue.5, pp.858-862, 2012.
DOI : 10.1210/jc.2011-2652

A. Verloes, Updated diagnostic criteria for CHARGE syndrome: A proposal, American Journal of Medical Genetics Part A, vol.76, issue.3, pp.306-308, 2005.
DOI : 10.1002/ajmg.a.30559

C. Luciferase, HeLa cells were co-transfected with the wildtype (wt) or mutant SOX10 expression vectorandareporter construct containing the MITF promoter (B) or MPZ intronic enhancer (C) and known SOX10 cofactors expression vectors, i.e., PAX3 (B) or EGR2 (C) Reporter gene activation is presented as luciferase fold induction relative to the empty vector. Results are the mean ± s.e.m of at least threedifferent experiments