E. Fernell and C. Gillberg, Autism spectrum disorder diagnoses in Stockholm preschoolers, Research in Developmental Disabilities, vol.31, issue.3, pp.680-685, 2010.
DOI : 10.1016/j.ridd.2010.01.007

C. Freitag, The genetics of autistic disorders and its clinical relevance: a review of the literature, Molecular Psychiatry, vol.28, issue.1, pp.2-22, 2007.
DOI : 10.1086/321292

J. Hallmayer, C. S. Torres, A. Phillips, J. Cohen, and B. , Genetic Heritability and Shared Environmental Factors Among Twin Pairs With Autism, Archives of General Psychiatry, vol.68, issue.11, 2011.
DOI : 10.1001/archgenpsychiatry.2011.76

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440679

T. Bourgeron, A synaptic trek to autism, Current Opinion in Neurobiology, vol.19, issue.2, pp.231-234, 2009.
DOI : 10.1016/j.conb.2009.06.003

R. Toro, M. Konyukh, R. Delorme, C. Leblond, and P. Chaste, Key role for gene dosage and synaptic homeostasis in autism spectrum disorders, Trends in Genetics, vol.26, issue.8, 2010.
DOI : 10.1016/j.tig.2010.05.007

C. Durand, C. Betancur, T. Boeckers, J. Bockmann, and P. Chaste, Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders, Nature Genetics, vol.28, issue.1, pp.25-27, 2007.
DOI : 10.1038/ng1933

URL : https://hal.archives-ouvertes.fr/inserm-00126175

S. Jamain, H. Quach, C. Betancur, M. Rastam, and C. Colineaux, Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism, Nature Genetics, vol.34, issue.1, pp.27-29, 2003.
DOI : 10.1038/ng1136

URL : https://hal.archives-ouvertes.fr/inserm-00124744

D. Pinto, A. Pagnamenta, L. Klei, R. Anney, and D. Merico, Functional impact of global rare copy number variation in autism spectrum disorders, Nature, vol.81, issue.7304, pp.368-372, 2010.
DOI : 10.1038/nature09146

URL : https://hal.archives-ouvertes.fr/inserm-00521387

P. Szatmari, A. Paterson, L. Zwaigenbaum, W. Roberts, and J. Brian, Mapping autism risk loci using genetic linkage and chromosomal rearrangements, Nature Genetics, vol.57, issue.3, pp.319-328, 2007.
DOI : 10.1086/503920

URL : https://hal.archives-ouvertes.fr/inserm-00937094

K. Reddy, Cytogenetic abnormalities and fragile-x syndrome in Autism Spectrum Disorder, BMC Medical Genetics, vol.27, issue.2, p.3, 2005.
DOI : 10.1023/A:1022155201662

O. Roak, B. Deriziotis, P. Lee, C. Vives, L. Schwartz et al., Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations, Nature Genetics, vol.18, issue.6, pp.585-589, 2011.
DOI : 10.1371/journal.pgen.1001157

. Williams-syndrome-region, Are Strongly Associated with Autism, Neuron, vol.70, pp.863-885

D. Levy, M. Ronemus, B. Yamrom, Y. Lee, and A. Leotta, Rare De Novo and Transmitted Copy-Number Variation in Autistic Spectrum Disorders, Neuron, vol.70, issue.5, pp.886-897, 2011.
DOI : 10.1016/j.neuron.2011.05.015

M. Poot, V. Beyer, I. Schwaab, N. Damatova, and R. Van-'t-slot, Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder, neurogenetics, vol.7, issue.1, pp.81-89, 2010.
DOI : 10.1007/s10048-009-0205-1

C. Schaaf, A. Sabo, Y. Sakai, J. Crosby, and D. Muzny, Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders, Human Molecular Genetics, vol.20, issue.17, pp.3366-3375, 2011.
DOI : 10.1093/hmg/ddr243

S. Girirajan, J. Rosenfeld, G. Cooper, F. Antonacci, and P. Siswara, A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay, Nature Genetics, vol.316, issue.3, pp.203-209, 2010.
DOI : 10.1038/ng.534

C. Betancur, Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting, Brain Research, vol.1380, pp.42-77, 2011.
DOI : 10.1016/j.brainres.2010.11.078

URL : https://hal.archives-ouvertes.fr/inserm-00549873

S. Gilman, I. Iossifov, D. Levy, M. Ronemus, and M. Wigler, Rare De Novo Variants Associated with Autism Implicate a Large Functional Network of Genes Involved in Formation and Function of Synapses, Neuron, vol.70, issue.5, pp.898-907, 2011.
DOI : 10.1016/j.neuron.2011.05.021

G. Cooper, B. Coe, S. Girirajan, J. Rosenfeld, and T. Vu, A copy number variation morbidity map of developmental delay, Nature Genetics, vol.455, issue.9, pp.838-846, 2011.
DOI : 10.1038/nature05329

T. Sudhof, Neuroligins and neurexins link synaptic function to cognitive disease, Nature, vol.27, issue.7215, pp.903-911, 2008.
DOI : 10.1038/nature07456

L. Yu and Y. Goda, Dendritic signalling and homeostatic adaptation, Current Opinion in Neurobiology, vol.19, issue.3, pp.327-335, 2009.
DOI : 10.1016/j.conb.2009.07.002

R. Moessner, C. Marshall, J. Sutcliffe, J. Skaug, and D. Pinto, Contribution of SHANK3 Mutations to Autism Spectrum Disorder, The American Journal of Human Genetics, vol.81, issue.6, pp.1289-1297, 2007.
DOI : 10.1086/522590

J. Gauthier, N. Champagne, R. Lafreniere, L. Xiong, and D. Spiegelman, in patients ascertained for schizophrenia, Proceedings of the National Academy of Sciences, vol.107, issue.17, pp.7863-7868, 2010.
DOI : 10.1073/pnas.0906232107

F. Hamdan, J. Gauthier, Y. Araki, D. Lin, and Y. Yoshizawa, Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability, The American Journal of Human Genetics, vol.88, issue.3, pp.306-316, 2011.
DOI : 10.1016/j.ajhg.2011.02.001

S. Berkel, C. Marshall, B. Weiss, J. Howe, and R. Roeth, Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation, Nature Genetics, vol.19, issue.6, pp.489-491, 2010.
DOI : 10.1016/j.cell.2009.01.050

A. Persico and T. Bourgeron, Searching for ways out of the autism maze: genetic, epigenetic and environmental clues, Trends in Neurosciences, vol.29, issue.7, pp.349-358, 2006.
DOI : 10.1016/j.tins.2006.05.010

T. Boeckers, M. Kreutz, C. Winter, W. Zuschratter, and K. Smalla, Proline-rich synapse-associated protein-1/cortactin binding protein 1 (Pro- SAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density, J Neurosci, vol.19, pp.6506-6518, 1999.

M. Sheng and E. Kim, The Shank family of scaffold proteins, J Cell Sci, vol.113, pp.1851-1856, 2000.

R. Mcwilliams, E. Gidey, L. Fouassier, S. Weed, and R. Doctor, Characterization of an ankyrin repeat-containing Shank2 isoform (Shank2E) in liver epithelial cells, Biochemical Journal, vol.380, issue.1, pp.181-191, 2004.
DOI : 10.1042/bj20031577

T. Boeckers, C. Winter, K. Smalla, M. Kreutz, and J. Bockmann, Proline-Rich Synapse-Associated Proteins ProSAP1 and ProSAP2 Interact with Synaptic Proteins of the SAPAP/GKAP Family, Biochemical and Biophysical Research Communications, vol.264, issue.1, pp.247-252, 1999.
DOI : 10.1006/bbrc.1999.1489

S. Lim, S. Naisbitt, J. Yoon, J. Hwang, and P. Suh, Characterization of the Shank Family of Synaptic Proteins: MULTIPLE GENES, ALTERNATIVE SPLICING, AND DIFFERENTIAL EXPRESSION IN BRAIN AND DEVELOPMENT, Journal of Biological Chemistry, vol.274, issue.41, pp.29510-29518, 1999.
DOI : 10.1074/jbc.274.41.29510

C. Durand, C. Kappeler, C. Betancur, R. Delorme, and H. Quach, Expression and genetic variability of PCDH11Y, a gene specific to Homo sapiens and candidate for susceptibility to psychiatric disorders, Am J Med Genet B Neuropsychiatr Genet, vol.141, pp.67-70, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00124745

R. Gutierrez, R. Flynn, J. Hung, A. Kertesz, and A. Sullivan, Activity-driven mobilization of post-synaptic proteins, European Journal of Neuroscience, vol.28, issue.17, pp.2042-2052, 2009.
DOI : 10.1111/j.1460-9568.2009.07007.x

A. Wischmeijer, P. Magini, R. Giorda, M. Gnoli, and R. Ciccone, Olfactory Receptor-Related Duplicons Mediate a Microdeletion at 11q13.2q13.4 Associated with a Syndromic Phenotype, Molecular Syndromology, vol.1, issue.4, pp.176-184, 2010.
DOI : 10.1159/000322054

J. Brandstatter, O. Dick, and T. Boeckers, The postsynaptic scaffold proteins ProSAP1/Shank2 and Homer1 are associated with glutamate receptor complexes at rat retinal synapses, Journal of Comparative Neurology, vol.19, issue.4, pp.551-563, 2004.
DOI : 10.1002/cne.20194

R. Rosmond and P. Bjorntorp, Psychiatric III-Health of Women and Its Relationship to Obesity and Body Fat Distribution, Obesity Research, vol.143, issue.Suppl I, pp.338-345, 1998.
DOI : 10.1002/j.1550-8528.1998.tb00361.x

C. Cloninger, D. Svrakic, and T. Przybeck, A Psychobiological Model of Temperament and Character, Archives of General Psychiatry, vol.50, issue.12, pp.975-990, 1993.
DOI : 10.1001/archpsyc.1993.01820240059008

D. Schalling, M. Asberg, G. Edman, and L. Oreland, Markers for vulnerability to psychopathology: Temperament traits associated with platelet MAO activity, Acta Psychiatrica Scandinavica, vol.135, issue.949, pp.172-182, 1987.
DOI : 10.1016/0006-2944(76)90031-4

J. Melke, L. Westberg, S. Nilsson, M. Landen, and H. Soderstrom, A Polymorphism in the Serotonin Receptor 3A (HTR3A) Gene and Its Association With Harm Avoidance in Women, Archives of General Psychiatry, vol.60, issue.10, pp.1017-1023, 2003.
DOI : 10.1001/archpsyc.60.10.1017

I. Adzhubei, S. Schmidt, L. Peshkin, V. Ramensky, and A. Gerasimova, A method and server for predicting damaging missense mutations, Nature Methods, vol.7, issue.4, pp.248-249, 2010.
DOI : 10.1038/nmeth0410-248

C. Marshall, A. Noor, J. Vincent, A. Lionel, and L. Feuk, Structural Variation of Chromosomes in Autism Spectrum Disorder, The American Journal of Human Genetics, vol.82, issue.2, pp.477-488, 2008.
DOI : 10.1016/j.ajhg.2007.12.009

D. Miller, Y. Shen, L. Weiss, J. Korn, and I. Anselm, Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders, Journal of Medical Genetics, vol.46, issue.4, pp.242-248, 2009.
DOI : 10.1136/jmg.2008.059907

C. Depienne, D. Moreno-de-luca, D. Heron, D. Bouteiller, and A. Gennetier, Screening for Genomic Rearrangements and Methylation Abnormalities of the 15q11-q13 Region in Autism Spectrum Disorders, Biological Psychiatry, vol.66, issue.4, pp.349-359, 2009.
DOI : 10.1016/j.biopsych.2009.01.025

URL : https://hal.archives-ouvertes.fr/inserm-00369261

B. Van-der-zwaag, W. Staal, R. Hochstenbach, M. Poot, and H. Spierenburg, A co-segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for autism spectrum disorder, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.16, issue.3, pp.960-966, 2010.
DOI : 10.1002/ajmg.b.31055

Y. Shen, K. Dies, I. Holm, C. Bridgemohan, and M. Sobeih, Clinical Genetic Testing for Patients With Autism Spectrum Disorders, PEDIATRICS, vol.125, issue.4, pp.727-735, 2010.
DOI : 10.1542/peds.2009-1684

A. Sharp, H. Mefford, K. Li, C. Baker, and C. Skinner, A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures, Nature Genetics, vol.143, issue.3, pp.322-328, 2008.
DOI : 10.1006/meth.2001.1262

A. Masurel-paulet, J. Andrieux, P. Callier, J. Cuisset, L. Caignec et al., Delineation of 15q13.3 microdeletions, Clinical Genetics, vol.41, issue.2, pp.149-161, 2010.
DOI : 10.1111/j.1399-0004.2010.01374.x

URL : https://hal.archives-ouvertes.fr/inserm-00466147

M. Doornbos, B. Sikkema-raddatz, C. Ruijvenkamp, T. Dijkhuizen, and E. Bijlsma, Nine patients with a microdeletion 15q11.2 between breakpoints 1 and 2 of the Prader???Willi critical region, possibly associated with behavioural disturbances, European Journal of Medical Genetics, vol.52, issue.2-3, pp.108-115, 2009.
DOI : 10.1016/j.ejmg.2009.03.010

I. Helbig, H. Mefford, A. Sharp, M. Guipponi, and M. Fichera, 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy, Nature Genetics, vol.51, issue.2, pp.160-162, 2009.
DOI : 10.1111/j.1528-1167.2005.00311.x

P. Szafranski, C. Schaaf, R. Person, I. Gibson, and Z. Xia, Structures and molecular mechanisms for common 15q13.3 microduplications involving CHRNA7: benign or pathological?, Human Mutation, vol.140, issue.7, pp.840-850, 2010.
DOI : 10.1002/humu.21284

S. Ben-shachar, B. Lanpher, J. German, M. Qasaymeh, and L. Potocki, Microdeletion 15q13.3: a locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders, Journal of Medical Genetics, vol.46, issue.6, pp.382-388, 2009.
DOI : 10.1136/jmg.2008.064378

H. Stefansson, D. Rujescu, S. Cichon, O. Pietilainen, and A. Ingason, Large recurrent microdeletions associated with schizophrenia, Nature, vol.1, issue.7210, pp.232-236, 2008.
DOI : 10.1038/nature07229

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687075

G. Tam, L. Van-de-lagemaat, R. Redon, K. Strathdee, and M. Croning, Confirmed rare copy number variants implicate novel genes in schizophrenia, Biochemical Society Transactions, vol.38, issue.2, pp.445-451, 2010.
DOI : 10.1042/BST0380445

S. Murthy, A. Nygren, E. Shakankiry, H. Schouten, J. et al., Detection of a novel familial deletion of four genes between BP1 and BP2 of the Prader-Willi/Angelman syndrome critical region by oligo-array CGH in a child with neurological disorder and speech impairment, Cytogenetic and Genome Research, vol.116, issue.1-2, pp.135-140, 2007.
DOI : 10.1159/000097433

M. Shinawi, C. Schaaf, S. Bhatt, Z. Xia, and A. Patel, A small recurrent deletion within 15q13.3 is associated with a range of neurodevelopmental phenotypes, Nature Genetics, vol.61, issue.12, pp.1269-1271, 2009.
DOI : 10.1038/ng.481

B. Van-bon, H. Mefford, B. Menten, D. Koolen, and A. Sharp, Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome, Journal of Medical Genetics, vol.46, issue.8, pp.511-523, 2009.
DOI : 10.1136/jmg.2008.063412

A. Pagnamenta, K. Wing, E. Akha, S. Knight, and S. Bolte, A 15q13.3 microdeletion segregating with autism, European Journal of Human Genetics, vol.321, issue.5, pp.687-692, 2009.
DOI : 10.1038/ejhg.2008.228

G. Kirov, D. Grozeva, N. Norton, D. Ivanov, and K. Mantripragada, Support for the involvement of large copy number variants in the pathogenesis of schizophrenia, Human Molecular Genetics, vol.18, issue.8, pp.1497-1503, 2009.
DOI : 10.1093/hmg/ddp043

C. De-kovel, H. Trucks, I. Helbig, H. Mefford, and C. Baker, Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies, Brain, vol.133, issue.1, pp.23-32, 2010.
DOI : 10.1093/brain/awp262

C. Cottrell, N. Bir, E. Varga, C. Alvarez, and S. Bouyain, Contactin 4 as an autism susceptibility locus, Autism Research, vol.358, issue.3, 2010.
DOI : 10.1002/aur.184

J. Rosenfeld, B. Ballif, B. Torchia, T. Sahoo, and J. Ravnan, Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders, Genetics in Medicine, vol.13, issue.11, pp.694-702, 2010.
DOI : 10.1097/GIM.0b013e3181f0c5f3

S. Christian, C. Brune, J. Sudi, R. Kumar, and S. Liu, Novel Submicroscopic Chromosomal Abnormalities Detected in Autism Spectrum Disorder, Biological Psychiatry, vol.63, issue.12, pp.1111-1117, 2008.
DOI : 10.1016/j.biopsych.2008.01.009

T. Vrijenhoek, J. Buizer-voskamp, I. Van-der-stelt, E. Strengman, and C. Sabatti, Recurrent CNVs Disrupt Three Candidate Genes in Schizophrenia Patients, The American Journal of Human Genetics, vol.83, issue.4, pp.504-510, 2008.
DOI : 10.1016/j.ajhg.2008.09.011

H. Yamakawa, S. Oyama, H. Mitsuhashi, N. Sasagawa, and S. Uchino, Neuroligins 3 and 4X interact with syntrophin-??2, and the interactions are affected by autism-related mutations, Biochemical and Biophysical Research Communications, vol.355, issue.1, pp.41-46, 2007.
DOI : 10.1016/j.bbrc.2007.01.127

A. Alessi, A. Bragg, J. Percival, J. Yoo, and D. Albrecht, ??-Syntrophin scaffolding is spatially and functionally distinct from that of the ??/?? syntrophins, Experimental Cell Research, vol.312, issue.16, pp.3084-3095, 2006.
DOI : 10.1016/j.yexcr.2006.06.019

T. Vierbuchen, A. Ostermeier, Z. Pang, Y. Kokubu, and T. Sudhof, Direct conversion of fibroblasts to functional neurons by defined factors, Nature, vol.48, issue.7284, pp.1035-1041, 2010.
DOI : 10.1038/nature08797

C. Durand, J. Perroy, F. Loll, D. Perrais, and L. Fagni, SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism, Molecular Psychiatry, vol.455, issue.1, 2011.
DOI : 10.1038/mp.2011.57

URL : https://hal.archives-ouvertes.fr/hal-00644264

S. Berkel, W. Tang, M. Trevino, M. Vogt, and H. Obenhaus, Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology, Human Molecular Genetics, vol.21, issue.2, 2011.
DOI : 10.1093/hmg/ddr470

R. Durbin, G. Abecasis, D. Altshuler, A. Auton, and L. Brooks, A map of human genome variation from population-scale sequencing, Nature, vol.10, issue.7319, pp.1061-1073, 2010.
DOI : 10.1038/nature09534

URL : https://hal.archives-ouvertes.fr/cea-00904997

D. Yasui, H. Scoles, S. Horike, M. Meguro-horike, and K. Dunaway, 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain, Human Molecular Genetics, vol.20, issue.22, 2011.
DOI : 10.1093/hmg/ddr357

M. Meguro-horike, D. Yasui, W. Powell, D. Schroeder, and M. Oshimura, Neuron-specific impairment of inter-chromosomal pairing and transcription in a novel model of human 15q-duplication syndrome, Human Molecular Genetics, vol.20, issue.19, pp.3798-3810, 2011.
DOI : 10.1093/hmg/ddr298

A. Hogart, K. Leung, N. Wang, D. Wu, and J. Driscoll, Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number, Journal of Medical Genetics, vol.46, issue.2, pp.86-93, 2009.
DOI : 10.1136/jmg.2008.061580

G. Triana-baltzer, Z. Liu, N. Gounko, and D. Berg, Multiple cell adhesion molecules shaping a complex nicotinic synapse on neurons, Molecular and Cellular Neuroscience, vol.39, issue.1, pp.74-82, 2008.
DOI : 10.1016/j.mcn.2008.05.017

S. Cheng, S. Amici, X. Ren, S. Mckay, and M. Treuil, Presynaptic Targeting of ??4??2 Nicotinic Acetylcholine Receptors Is Regulated by Neurexin-1??, Journal of Biological Chemistry, vol.284, issue.35, pp.23251-23259, 2009.
DOI : 10.1074/jbc.M109.017384

R. Neff, D. Gomez-varela, C. Fernandes, and D. Berg, Postsynaptic scaffolds for nicotinic receptors on neurons, Acta Pharmacologica Sinica, vol.3, issue.6, pp.694-701, 2009.
DOI : 10.1038/nn.2145

A. Schenck, B. Bardoni, C. Langmann, N. Harden, and J. Mandel, CYFIP/Sra-1 Controls Neuronal Connectivity in Drosophila and Links the Rac1 GTPase Pathway to the Fragile X Protein, Neuron, vol.38, issue.6, pp.887-898, 2003.
DOI : 10.1016/S0896-6273(03)00354-4

R. Kelleher and M. Bear, The Autistic Neuron: Troubled Translation?, Cell, vol.135, issue.3, pp.401-406, 2008.
DOI : 10.1016/j.cell.2008.10.017

T. Boeckers, J. Bockmann, M. Kreutz, and E. Gundelfinger, ProSAP/Shank proteins - a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease, Journal of Neurochemistry, vol.274, issue.5, pp.903-910, 2002.
DOI : 10.1046/j.1471-4159.2002.00931.x

Y. Sugiyama, I. Kawabata, K. Sobue, and S. Okabe, Determination of absolute protein numbers in single synapses by a GFP-based calibration technique, Nature Methods, vol.23, issue.9, pp.677-684, 2005.
DOI : 10.1016/S0165-0270(99)00112-0

R. Nagai, R. Hashimoto, Y. Tanaka, O. Taguchi, and M. Sato, Syntrophin-2 is required for eye development in Drosophila, Experimental Cell Research, vol.316, issue.2, pp.272-285, 2010.
DOI : 10.1016/j.yexcr.2009.10.009

G. Dolen, E. Osterweil, B. Rao, G. Smith, and B. Auerbach, Correction of Fragile X Syndrome in Mice, Neuron, vol.56, issue.6, pp.955-962, 2007.
DOI : 10.1016/j.neuron.2007.12.001

L. Vissers, J. De-ligt, C. Gilissen, I. Janssen, and M. Steehouwer, A de novo paradigm for mental retardation, Nature Genetics, vol.38, issue.12, pp.1109-1112, 2010.
DOI : 10.2307/2283970

S. Colella, C. Yau, J. Taylor, G. Mirza, and H. Butler, QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data, Nucleic Acids Research, vol.35, issue.6, pp.2013-2025, 2007.
DOI : 10.1093/nar/gkm076

K. Wang, M. Li, D. Hadley, R. Liu, and J. Glessner, PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data, Genome Research, vol.17, issue.11, pp.1665-1674, 2007.
DOI : 10.1101/gr.6861907

T. Boeckers, T. Liedtke, C. Spilker, T. Dresbach, and J. Bockmann, C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3, Journal of Neurochemistry, vol.274, issue.3, pp.519-524, 2005.
DOI : 10.1016/S0896-6273(00)80409-2