J. Hamanishi, Association between intraepithelial T-cell infiltration (TIL CD3 + ) and patient survival Association between intraepithelial T-cell infiltration (TIL CD8 + ) and patient survival (only for high grade serous EOC, but not for endometrioïd or mucinous EOC), 2007.

C. Shah, Association between intraepithelial T-cell infiltration (TIL CD8 + ) and optimal debulking surgery Tomsova M Association between intraepithelial T-cell infiltration (TIL CD3 + ) and patient survival, Association between intraepithelial T-cell infiltration (TIL CD8 + ) and patient survival, 2008.

L. Han, Association between intraepithelial T-cell infiltration (TIL CD3 + and CD8 + ) and patient survival Stumpf M et al. [29] 2009 Association between intraepithelial T-cell infiltration (TIL CD3 + and CD8 + ) and patient survival Leffers N, Association between intraepithelial T-cell infiltration (TIL CD8 + ) and patient survival, 2008.

K. Milne, Association between intraepithelial T-cell infiltration (TIL CD3 + and CD8 + ) and patient survival Adams SF et al. [32] 2009 Association between intraepithelial T-cell infiltration (TIL CD3 + and CD8 + ) and patient survival Kryczek I et al. [35] 2009 Association between intraepithelial T-cell infiltration (TIL CD4 + with IL-17 secretion) and patient survival Tumor immune evasion Curiel TJ et al, Inverse association between survival and intratumoral regulatory T cells (CD4 + CD25 + FoxP3 + ), 2004.

I. Kryczek, Inverse association between survival and intratumoral B7-H4 + macrophage or regulatory T cells, 2007.

J. Hamanishi, PD-L1 expression by tumor predicts low, 2007.

R. Buckanovitch, ET B R) expression restricts T-cell infiltration and predicts poor survival Labidi-Galy SI, Inverse association between survival and intratumoral pDC (CD4 + , CD123 + , BDCA2 + ), 2008.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu et al., Cancer Statistics, 2009, Cancer statistics, pp.225-249, 2009.
DOI : 10.3322/caac.20006

J. Pfisterer and J. Ledermann, Management of Platinum-Sensitive Recurrent Ovarian Cancer, Seminars in Oncology, vol.33, pp.12-16, 2006.
DOI : 10.1053/j.seminoncol.2006.03.012

P. Hoskins, I. Vergote, A. Cervantes, D. Tu, G. Stuart et al., Advanced Ovarian Cancer: Phase III Randomized Study of Sequential Cisplatin-Topotecan and Carboplatin-Paclitaxel vs Carboplatin-Paclitaxel, JNCI Journal of the National Cancer Institute, vol.102, issue.20, pp.1547-1556, 2010.
DOI : 10.1093/jnci/djq362

K. Knutson, T. Curiel, L. Salazar, and M. Disis, Immunologic principles and immunotherapeutic approaches in ovarian cancer, Hematology/Oncology Clinics of North America, vol.17, issue.4, pp.1051-1073, 2003.
DOI : 10.1016/S0889-8588(03)00064-9

J. Cubillos-ruiz, M. Rutkowski, and J. Conejo-garcia, Blocking ovarian cancer progression by targeting tumor microenvironmental leukocytes, Cell Cycle, vol.9, issue.2, pp.260-268, 2010.
DOI : 10.4161/cc.9.2.10430

I. Brune, W. Wilke, T. Hensler, B. Holzmann, and J. Siewert, Downregulation of T helper type 1 immune response and altered pro-inflammatory and anti-inflammatory T cell cytokine balance following conventional but not laparoscopic surgery11This work was supported by DFG grants Si 208/5-1 and Si 208/5-4 to the clinical research group, ???Immunosuppression und Postoperative Sepsis.???, The American Journal of Surgery, vol.177, issue.1, pp.55-60, 1999.
DOI : 10.1016/S0002-9610(98)00299-2

C. Napoletano, F. Bellati, R. Landi, S. Pauselli, C. Marchetti et al., Ovarian cancer cytoreduction induces changes in T cell population subsets reducing immunosuppression, Journal of Cellular and Molecular Medicine, vol.178, issue.12, pp.2748-2759, 2010.
DOI : 10.1111/j.1582-4934.2009.00911.x

S. Coleman, A. Clayton, M. Mason, B. Jasani, M. Adams et al., Recovery of CD8+ T-Cell Function During Systemic Chemotherapy in Advanced Ovarian Cancer, Cancer Research, vol.65, issue.15, pp.7000-7006, 2005.
DOI : 10.1158/0008-5472.CAN-04-3792

C. Ioannides, B. Fisk, D. Fan, W. Biddison, J. Wharton et al., Cytotoxic T Cells Isolated from Ovarian Malignant Ascites Recognize a Peptide Derived from the HER-2/neu Proto-oncogene, Cellular Immunology, vol.151, issue.1, pp.225-234, 1993.
DOI : 10.1006/cimm.1993.1233

M. Bookman, K. Darcy, D. Clarke-pearson, R. Boothby, and I. Horowitz, Evaluation of Monoclonal Humanized Anti-HER2 Antibody, Trastuzumab, in Patients With Recurrent or Refractory Ovarian or Primary Peritoneal Carcinoma With Overexpression of HER2: A Phase II Trial of the Gynecologic Oncology Group, Journal of Clinical Oncology, vol.21, issue.2, pp.283-290, 2003.
DOI : 10.1200/JCO.2003.10.104

S. Camilleri-broet, A. Hardy-bessard, L. Tourneau, A. Paraiso, D. Levrel et al., HER-2 overexpression is an independent marker of poor prognosis of advanced primary ovarian carcinoma: a multicenter study of the GINECO group, Annals of Oncology, vol.15, issue.1, pp.104-112, 2004.
DOI : 10.1093/annonc/mdh021

G. Peoples, B. Anderson, B. Fisk, A. Kudelka, J. Wharton et al., Ovarian cancer-associated lymphocyte recognition of folate binding protein peptides, Annals of Surgical Oncology, vol.38, issue.8, pp.743-750, 1998.
DOI : 10.1007/BF02303486

S. Runz, S. Keller, C. Rupp, A. Stoeck, Y. Issa et al., Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM, Gynecologic Oncology, vol.107, issue.3, pp.563-571, 2007.
DOI : 10.1016/j.ygyno.2007.08.064

R. Drapkin, H. Von-horsten, Y. Lin, S. Mok, C. Crum et al., Human Epididymis Protein 4 (HE4) Is a Secreted Glycoprotein that Is Overexpressed by Serous and Endometrioid Ovarian Carcinomas, Cancer Research, vol.65, issue.6, pp.2162-2169, 2005.
DOI : 10.1158/0008-5472.CAN-04-3924

V. Goodell, L. Salazar, N. Urban, C. Drescher, H. Gray et al., Antibody Immunity to the p53 Oncogenic Protein Is a Prognostic Indicator in Ovarian Cancer, Journal of Clinical Oncology, vol.24, issue.5, pp.762-768, 2006.
DOI : 10.1200/JCO.2005.03.2813

S. Chauhan, A. Singh, F. Ruiz, S. Johansson, M. Jain et al., Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125), Modern Pathology, vol.13, issue.10
DOI : 10.1002/1097-0142(20010601)91:11<1973::AID-CNCR1222>3.0.CO;2-A

S. Zhang, X. Zhou, H. Yu, and Y. Yu, Expression of tumor-specific antigen MAGE, GAGE and BAGE in ovarian cancer tissues and cell lines, BMC Cancer, vol.56, issue.1, p.163, 2010.
DOI : 10.1034/j.1399-0039.2000.560210.x

M. Chiriva-internati, Z. Wang, E. Salati, P. Timmins, and S. Lim, Tumor vaccine for ovarian carcinoma targeting sperm protein 17 regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Cancer Nat Med, vol.94, issue.10, pp.2447-2453942, 2002.

C. Wilke, I. Kryczek, and W. Zou, Antigen-Presenting Cell (APC) Subsets in Ovarian Cancer, International Reviews of Immunology, vol.10, issue.2-3, pp.120-126, 2011.
DOI : 10.4049/jimmunol.0802501

M. Callahan, Z. Nagymanyoki, T. Bonome, M. Johnson, B. Litkouhi et al., Increased HLA-DMB Expression in the Tumor Epithelium Is Associated with Increased CTL Infiltration and Improved Prognosis in Advanced-Stage Serous Ovarian Cancer, Clinical Cancer Research, vol.14, issue.23, pp.7667-7673, 2008.
DOI : 10.1158/1078-0432.CCR-08-0479

N. Leffers, R. Fehrmann, M. Gooden, U. Schulze, T. Hoor et al., Identification of genes and pathways associated with cytotoxic T lymphocyte infiltration of serous ovarian cancer, British Journal of Cancer, vol.181, issue.5, pp.685-692, 2010.
DOI : 10.1056/NEJMoa020177

D. Wolf, A. Wolf, H. Rumpold, H. Fiegl, A. Zeimet et al., The Expression of the Regulatory T Cell-Specific Forkhead Box Transcription Factor FoxP3 Is Associated with Poor Prognosis in Ovarian Cancer, Clinical Cancer Research, vol.11, issue.23, pp.8326-8331, 2005.
DOI : 10.1158/1078-0432.CCR-05-1244

H. Dong, M. Elstrand, A. Holth, I. Silins, A. Berner et al., NK- and B-Cell Infiltration Correlates With Worse Outcome in Metastatic Ovarian Carcinoma, American Journal of Clinical Pathology, vol.125, issue.3, pp.451-458, 2006.
DOI : 10.1309/15B66DQMFYYM78CJ

I. Kryczek, S. Wei, G. Zhu, L. Myers, P. Mottram et al., Relationship between B7-H4, Regulatory T Cells, and Patient Outcome in Human Ovarian Carcinoma, Cancer Research, vol.67, issue.18, pp.8900-8905, 2007.
DOI : 10.1158/0008-5472.CAN-07-1866

R. Buckanovich, A. Facciabene, S. Kim, F. Benencia, D. Sasaroli et al., Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy, Nature Medicine, vol.32, issue.1, pp.28-36, 2008.
DOI : 10.1182/blood-2004-05-1906

S. Labidi-galy, V. Sisirak, P. Meeus, M. Gobert, I. Treilleux et al., Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer, Cancer Research, vol.71, issue.16, pp.5423-5434, 2011.
DOI : 10.1158/0008-5472.CAN-11-0367

URL : https://hal.archives-ouvertes.fr/hal-00849783

V. Lavoué, F. Cabillic, O. Toutirais, A. Thedrez, B. Dessarthe et al., Sensitization of ovarian carcinoma cells with zoledronate restores the cytotoxic capacity of V??9V??2 T cells impaired by the prostaglandin E2 immunosuppressive factor: Implications for immunotherapy, International Journal of Cancer, vol.37, issue.Suppl. 2, pp.449-462, 2011.
DOI : 10.1002/ijc.27353

F. Burnet, The Concept of Immunological Surveillance, Prog Exp Tumor Res, vol.13, pp.1-27, 1970.
DOI : 10.1159/000386035

R. Schreiber, L. Old, and M. Smyth, Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion, Science, vol.331, issue.6024, pp.1565-1570, 2011.
DOI : 10.1126/science.1203486

J. Lu, R. Aggarwal, S. Kanji, M. Das, M. Joseph et al., Human Ovarian Tumor Cells Escape ???? T Cell Recognition Partly by Down Regulating Surface Expression of MICA and Limiting Cell Cycle Related Molecules, PLoS ONE, vol.329, issue.182, p.23348, 2011.
DOI : 10.1371/journal.pone.0023348.s005

A. Thedrez, C. Sabourin, J. Gertner, M. Devilder, S. Allain-maillet et al., Self/non-self discrimination by human ???? T cells: simple solutions for a complex issue?, Immunological Reviews, vol.153, issue.1, pp.123-135, 2007.
DOI : 10.1182/blood-2004-01-0331

J. Gubbels, M. Felder, S. Horibata, J. Belisle, A. Kapur et al., MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells, Molecular Cancer, vol.9, issue.1, p.1611, 2010.
DOI : 10.1186/1476-4598-9-11

J. Belisle, S. Horibata, G. Jennifer, S. Petrie, A. Kapur et al., Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes, Molecular Cancer, vol.9, issue.1, p.118, 2010.
DOI : 10.1186/1476-4598-9-118

M. Krockenberger, Y. Dombrowski, C. Weidler, M. Ossadnik, A. Honig et al., Macrophage Migration Inhibitory Factor Contributes to the Immune Escape of Ovarian Cancer by Down-Regulating NKG2D, The Journal of Immunology, vol.180, issue.11, pp.7338-7348, 2008.
DOI : 10.4049/jimmunol.180.11.7338

J. Matsuzaki, S. Gnjatic, P. Mhawech-fauceglia, A. Beck, A. Miller et al., T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer, Proceedings of the National Academy of Sciences, vol.107, issue.17, pp.7875-7880, 2010.
DOI : 10.1073/pnas.1003345107

A. Okamoto, T. Nikaido, K. Ochiai, S. Takakura, M. Saito et al., Indoleamine 2,3-Dioxygenase Serves as a Marker of Poor Prognosis in Gene Expression Profiles of Serous Ovarian Cancer Cells, Clinical Cancer Research, vol.11, issue.16, pp.6030-6039, 2005.
DOI : 10.1158/1078-0432.CCR-04-2671

T. Inaba, K. Ino, H. Kajiyama, E. Yamamoto, K. Shibata et al., Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma, Gynecologic Oncology, vol.115, issue.2, pp.185-192, 2009.
DOI : 10.1016/j.ygyno.2009.07.015

A. Mellor and D. Munn, Creating immune privilege: active local suppression that benefits friends, but protects foes, Nature Reviews Immunology, vol.176, issue.1, pp.74-80, 2008.
DOI : 10.1038/nri2233

T. Johnson and D. Munn, Host Indoleamine 2,3-Dioxygenase: Contribution to Systemic Acquired Tumor Tolerance, Immunological Investigations, vol.8, issue.6-7, pp.765-797, 2012.
DOI : 10.1038/nrd870

S. Ostrand-rosenberg, P. Sinha, D. Beury, and V. Clements, Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression, Seminars in Cancer Biology, vol.22, issue.4, pp.275-281, 2012.
DOI : 10.1016/j.semcancer.2012.01.011

T. Curiel, S. Wei, H. Dong, X. Alvarez, P. Cheng et al., Blockade of B7-H1 improves myeloid dendritic cell???mediated antitumor immunity, Nature Medicine, vol.9, issue.5, pp.562-567, 2003.
DOI : 10.1038/nm863

I. Kryczek, L. Zou, P. Rodriguez, G. Zhu, S. Wei et al., B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma, The Journal of Experimental Medicine, vol.6, issue.4, pp.871-881, 2006.
DOI : 10.1016/S0022-1759(01)00359-3

R. Yang, Z. Cai, Y. Zhang, W. Yutzy, K. Roby et al., CD80 in Immune Suppression by Mouse Ovarian Carcinoma-Associated Gr-1+CD11b+ Myeloid Cells, Cancer Research, vol.66, issue.13, pp.6807-6815, 2006.
DOI : 10.1158/0008-5472.CAN-05-3755

U. Scarlett, M. Rutkowski, A. Rauwerdink, J. Fields, X. Escovar-fadul et al., Ovarian cancer progression is controlled by phenotypic changes in dendritic cells, The Journal of Experimental Medicine, vol.63, issue.3, pp.495-506, 2012.
DOI : 10.1056/NEJMoa020177

J. Faget, N. Bendriss-vermare, M. Gobert, I. Durand, D. Olive et al., ICOS-Ligand Expression on Plasmacytoid Dendritic Cells Supports Breast Cancer Progression by Promoting the Accumulation of Immunosuppressive CD4+ T Cells, Cancer Research, vol.72, issue.23, pp.6130-6141, 2012.
DOI : 10.1158/0008-5472.CAN-12-2409

C. Conrad, J. Gregorio, Y. Wang, T. Ito, S. Meller et al., Plasmacytoid Dendritic Cells Promote Immunosuppression in Ovarian Cancer via ICOS Costimulation of Foxp3+ T-Regulatory Cells, Cancer Research, vol.72, issue.20, pp.5240-5249, 2012.
DOI : 10.1158/0008-5472.CAN-12-2271

V. Liu, L. Wong, T. Jang, A. Shah, I. Park et al., Tumor Evasion of the Immune System by Converting CD4+CD25- T Cells into CD4+CD25+ T Regulatory Cells: Role of Tumor-Derived TGF-??, The Journal of Immunology, vol.178, issue.5, pp.2883-2892, 2007.
DOI : 10.4049/jimmunol.178.5.2883

A. Curti, S. Pandolfi, B. Valzasina, M. Aluigi, A. Isidori et al., Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells, Blood, vol.109, pp.2871-2877, 2007.
DOI : 10.1182/blood-2006-07-036863

K. Oleinika, R. Nibbs, G. Graham, and A. Fraser, Suppression, subversion and escape: the role of regulatory T cells in cancer progression, Clinical & Experimental Immunology, vol.114, issue.1, pp.36-45, 2013.
DOI : 10.1111/j.1365-2249.2012.04657.x

T. Ito, Y. Liu, and N. Kadowaki, Functional Diversity and Plasticity of Human Dendritic Cell Subsets, International Journal of Hematology, vol.31, issue.3, pp.188-196, 2005.
DOI : 10.1532/IJH97.05012

U. Scarlett, J. Cubillos-ruiz, Y. Nesbeth, D. Martinez, X. Engle et al., In situ Stimulation of CD40 and Toll-like Receptor 3 Transforms Ovarian Cancer-Infiltrating Dendritic Cells from Immunosuppressive to Immunostimulatory Cells, Cancer Research, vol.69, issue.18, pp.7329-7337, 2009.
DOI : 10.1158/0008-5472.CAN-09-0835

W. Zou, V. Machelon, A. Coulomb-l-'hermin, J. Borvak, F. Nome et al., Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells, Nature Medicine, vol.7, issue.12, pp.1339-1346, 2001.
DOI : 10.1038/nm1201-1339

S. Tseng, M. Otsuji, K. Gorski, X. Huang, J. Slansky et al., B7-Dc, a New Dendritic Cell Molecule with Potent Costimulatory Properties for T Cells, The Journal of Experimental Medicine, vol.11, issue.7, pp.839-846, 2001.
DOI : 10.1007/s003359900508

J. Krempski, L. Karyampudi, M. Behrens, C. Erskine, L. Hartmann et al., Tumor-Infiltrating Programmed Death Receptor-1+ Dendritic Cells Mediate Immune Suppression in Ovarian Cancer, The Journal of Immunology, vol.186, issue.12, pp.6905-6913, 2011.
DOI : 10.4049/jimmunol.1100274

H. Dong, S. Strome, D. Salomao, H. Tamura, F. Hirano et al., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion, Nat Med, vol.8, pp.793-800, 2002.

L. Wang, K. Pino-lagos, V. De-vries, I. Guleria, M. Sayegh et al., Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells, Proceedings of the National Academy of Sciences, vol.105, issue.27, pp.9331-9336, 2008.
DOI : 10.1073/pnas.0710441105

D. Munn, M. Sharma, D. Hou, B. Baban, J. Lee et al., Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes, Journal of Clinical Investigation, vol.114, issue.2, pp.280-290, 2004.
DOI : 10.1172/JCI200421583

D. Chiesa, M. Carlomagno, S. Frumento, G. Balsamo, M. Cantoni et al., The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function, Blood, vol.108, issue.13, pp.4118-4125, 2006.
DOI : 10.1182/blood-2006-03-006700

T. Wan, J. Liu, L. Zheng, M. Cai, and T. Ding, Prognostic significance of tumor-associated macrophage infiltration in advanced epithelial ovarian carcinoma, Ai Zheng, vol.28, pp.323-327, 2009.

S. Bak, A. Alonso, M. Turk, and B. Berwin, Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression, Molecular Immunology, vol.46, issue.2, pp.258-268, 2008.
DOI : 10.1016/j.molimm.2008.08.266

N. Obermajer, R. Muthuswamy, K. Odunsi, R. Edwards, and P. Kalinski, PGE2-Induced CXCL12 Production and CXCR4 Expression Controls the Accumulation of Human MDSCs in Ovarian Cancer Environment, Cancer Research, vol.71, issue.24, pp.7463-7470, 2011.
DOI : 10.1158/0008-5472.CAN-11-2449

A. Ezernitchi, I. Vaknin, L. Cohen-daniel, O. Levy, E. Manaster et al., TCR ?? Down-Regulation under Chronic Inflammation Is Mediated by Myeloid Suppressor Cells Differentially Distributed between Various Lymphatic Organs, The Journal of Immunology, vol.177, issue.7, pp.4763-4772, 2006.
DOI : 10.4049/jimmunol.177.7.4763

A. Mazzoni, V. Bronte, A. Visintin, J. Spitzer, E. Apolloni et al., Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism, The Journal of Immunology, vol.168, issue.2, pp.689-695, 2002.
DOI : 10.4049/jimmunol.168.2.689

S. Nagaraj, K. Gupta, V. Pisarev, L. Kinarsky, S. Sherman et al., Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer, Nature Medicine, vol.166, issue.7, pp.828-835, 2007.
DOI : 10.1038/nm1609

B. Huang, P. Pan, Q. Li, A. Sato, D. Levy et al., Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host, Cancer Research, vol.66, issue.2, pp.1123-1131, 2006.
DOI : 10.1158/0008-5472.CAN-05-1299

B. Molon, S. Ugel, D. Pozzo, F. Soldani, C. Zilio et al., Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells, The Journal of Experimental Medicine, vol.57, issue.10, pp.1949-1962, 2011.
DOI : 10.1158/0008-5472.CAN-07-5324

L. Yang, R. Froio, T. Sciuto, A. Dvorak, R. Alon et al., ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-??-activated vascular endothelium under flow, Blood, vol.106, issue.2, pp.584-592, 2005.
DOI : 10.1182/blood-2004-12-4942

Y. Sebti, L. Friec, G. Pangault, C. Gros, F. Drenou et al., Soluble HLA-G molecules are increased in lymphoproliferative disorders, Human Immunology, vol.64, issue.11, pp.1093-1101, 2003.
DOI : 10.1016/j.humimm.2003.08.345

R. Freedman, M. Deavers, J. Liu, and E. Wang, Peritoneal inflammation -A microenvironment for Epithelial Ovarian Cancer (EOC), Journal of Translational Medicine, vol.2, issue.1, p.23, 2004.
DOI : 10.1186/1479-5876-2-23

B. Nelson, The impact of T-cell immunity on ovarian cancer outcomes, Immunological Reviews, vol.16, issue.1, pp.101-116, 2008.
DOI : 10.1158/0008-5472.CAN-07-0565

A. Lin, X. Zhang, W. Zhou, Y. Ruan, D. Xu et al., Human leukocyte antigen-G expression is associated with a poor prognosis in patients with esophageal squamous cell carcinoma, International Journal of Cancer, vol.11, issue.6, pp.1382-1390, 2011.
DOI : 10.1002/ijc.25807

G. Rodriguez, C. Haisley, J. Hurteau, T. Moser, R. Whitaker et al., Regulation of Invasion of Epithelial Ovarian Cancer by Transforming Growth Factor-??, Gynecologic Oncology, vol.80, issue.2, pp.245-253, 2001.
DOI : 10.1006/gyno.2000.6042

G. Ferrandina, L. Lauriola, G. Zannoni, A. Fagotti, F. Fanfani et al., Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients, Annals of Oncology, vol.13, issue.8, pp.1205-1211, 2002.
DOI : 10.1093/annonc/mdf207

L. Martinet, C. Jean, G. Dietrich, J. Fournie, and R. Poupot, PGE2 inhibits natural killer and ???? T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling, Biochemical Pharmacology, vol.80, issue.6, pp.838-845, 2010.
DOI : 10.1016/j.bcp.2010.05.002

S. Komarova, Y. Kawakami, M. Stoff-khalili, D. Curiel, and L. Pereboeva, Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses, Molecular Cancer Therapeutics, vol.5, issue.3, pp.755-766, 2006.
DOI : 10.1158/1535-7163.MCT-05-0334

J. Harden and N. Egilmez, Indoleamine 2,3-Dioxygenase and Dendritic Cell Tolerogenicity, Immunological Investigations, vol.25, issue.2, pp.738-764, 2012.
DOI : 10.1111/j.1600-6143.2011.03624.x

F. Qian, J. Villella, P. Wallace, P. Mhawech-fauceglia, J. Tario et al., Efficacy of Levo-1-Methyl Tryptophan and Dextro-1-Methyl Tryptophan in Reversing Indoleamine-2,3-Dioxygenase-Mediated Arrest of T-Cell Proliferation in Human Epithelial Ovarian Cancer, Cancer Research, vol.69, issue.13, pp.5498-5504, 2009.
DOI : 10.1158/0008-5472.CAN-08-2106

H. Nonaka, Y. Saga, H. Fujiwara, H. Akimoto, A. Yamada et al., 3-dioxygenase promotes peritoneal dissemination of ovarian cancer through inhibition of natural killercell function and angiogenesis promotion, Int J Oncol, vol.2, issue.38, pp.113-120, 2011.

D. Munn, M. Sharma, B. Baban, H. Harding, Y. Zhang et al., GCN2 Kinase in T Cells Mediates Proliferative Arrest and Anergy Induction in Response to Indoleamine 2,3-Dioxygenase, Immunity, vol.22, issue.5, pp.633-642, 2005.
DOI : 10.1016/j.immuni.2005.03.013

F. Fallarino, U. Grohmann, S. You, B. Mcgrath, D. Cavener et al., The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells

M. Platten, W. Wick, . Van-den-eynde, and . Bj, Tryptophan Catabolism in Cancer: Beyond IDO and Tryptophan Depletion, Cancer Research, vol.72, issue.21, pp.5435-5440, 2011.
DOI : 10.1158/0008-5472.CAN-12-0569

W. Winter, G. Maxwell, C. Tian, M. Sundborg, G. Rose et al., Tumor Residual After Surgical Cytoreduction in Prediction of Clinical Outcome in Stage IV Epithelial Ovarian Cancer: A Gynecologic Oncology Group Study, Journal of Clinical Oncology, vol.26, issue.1, pp.83-89, 2008.
DOI : 10.1200/JCO.2007.13.1953

A. Covens, A Critique of Surgical Cytoreduction in Advanced Ovarian Cancer, Gynecologic Oncology, vol.78, issue.3, pp.269-274, 2000.
DOI : 10.1006/gyno.2000.5926

T. Hensler, H. Hecker, K. Heeg, C. Heidecke, H. Bartels et al., Distinct mechanisms of immunosuppression as a consequence of major surgery, Infect Immun, vol.65, pp.2283-2291, 1997.

J. Baumgartner and M. Mccarter, Suppressing the suppressor: Role of immunosuppressive regulatory T cells in cancer surgery, Surgery, vol.145, issue.4, pp.345-350, 2009.
DOI : 10.1016/j.surg.2008.12.013

L. Zitvogel, O. Kepp, and G. Kroemer, Immune parameters affecting the efficacy of chemotherapeutic regimens, Nature Reviews Clinical Oncology, vol.23, issue.3, pp.151-160, 2011.
DOI : 10.1038/nrclinonc.2010.223

Y. Ma, L. Aymeric, C. Locher, S. Mattarollo, N. Delahaye et al., Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy, pp.491-503, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00576679

R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H. Cho et al., Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice, Journal of Clinical Investigation, vol.120, issue.4, pp.1111-1124, 2010.
DOI : 10.1172/JCI40269DS1

W. Carson, C. Shapiro, T. Crespin, L. Thornton, and B. Andersen, Cellular Immunity in Breast Cancer Patients Completing Taxane Treatment, Clinical Cancer Research, vol.10, issue.10, pp.3401-3409, 2004.
DOI : 10.1158/1078-0432.CCR-1016-03

L. Zitvogel, L. Apetoh, F. Ghiringhelli, F. Andre, A. Tesniere et al., The anticancer immune response: indispensable for therapeutic success?, Journal of Clinical Investigation, vol.118, issue.6, pp.1991-2001, 2008.
DOI : 10.1172/JCI35180

A. Tesniere, L. Apetoh, F. Ghiringhelli, N. Joza, T. Panaretakis et al., Immunogenic cancer cell death: a key-lock paradigm, Current Opinion in Immunology, vol.20, issue.5, pp.504-511, 2008.
DOI : 10.1016/j.coi.2008.05.007

N. Casares, M. Pequignot, A. Tesniere, F. Ghiringhelli, S. Roux et al., Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death, The Journal of Experimental Medicine, vol.157, issue.12, pp.1691-1701, 2005.
DOI : 10.1073/pnas.93.18.9730

L. Kandalaft, D. Powell, . Jr, N. Singh, and G. Coukos, Immunotherapy for Ovarian Cancer: What's Next?, Journal of Clinical Oncology, vol.29, issue.7, pp.925-933, 2011.
DOI : 10.1200/JCO.2009.27.2369

C. Preston, E. Goode, L. Hartmann, K. Kalli, and K. Knutson, Immunity and immune suppression in human ovarian cancer, Immunotherapy, vol.3, issue.4, pp.539-556, 2011.
DOI : 10.2217/imt.11.20

N. Leffers, T. Daemen, W. Helfrich, H. Boezen, B. Cohlen et al., Antigen-specific active immunotherapy for ovarian cancer, Cochrane Database Syst Rev, vol.2010, issue.1, p.20091627

P. Frederick, J. Straughn, . Jr, R. Alvarez, and D. Buchsbaum, Preclinical studies and clinical utilization of monoclonal antibodies in epithelial ovarian cancer, Gynecologic Oncology, vol.113, issue.3, pp.384-390, 2009.
DOI : 10.1016/j.ygyno.2009.01.008

J. Berek, P. Taylor, W. Mcguire, L. Smith, B. Schultes et al., Oregovomab Maintenance Monoimmunotherapy Does Not Improve Outcomes in Advanced Ovarian Cancer, Journal of Clinical Oncology, vol.27, issue.3, pp.418-425, 2009.
DOI : 10.1200/JCO.2008.17.8400

S. Reinartz, S. Kohler, H. Schlebusch, K. Krista, P. Giffels et al., Vaccination of Patients with Advanced Ovarian Carcinoma with the Anti-Idiotype ACA125: Immunological Response and Survival (Phase Ib/II), Clinical Cancer Research, vol.10, issue.5, pp.1580-1587, 2004.
DOI : 10.1158/1078-0432.CCR-03-0056

J. Pfisterer, A. Du-bois, J. Sehouli, S. Loibl, S. Reinartz et al., The anti-idiotypic antibody abagovomab in patients with recurrent ovarian cancer. A phase I trial of the AGO-OVAR, Annals of Oncology, vol.17, issue.10
DOI : 10.1093/annonc/mdl357

S. Makhija, L. Amler, D. Glenn, F. Ueland, M. Gold et al., Clinical Activity of Gemcitabine Plus Pertuzumab in Platinum-Resistant Ovarian Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer, Journal of Clinical Oncology, vol.28, issue.7, pp.1215-1223, 2010.
DOI : 10.1200/JCO.2009.22.3354

J. Konner, K. Bell-mcguinn, P. Sabbatini, M. Hensley, W. Tew et al., Farletuzumab, a Humanized Monoclonal Antibody against Folate Receptor ??, in Epithelial Ovarian Cancer: a Phase I Study, Clinical Cancer Research, vol.16, issue.21, pp.5288-5295, 2010.
DOI : 10.1158/1078-0432.CCR-10-0700

M. Heiss, P. Murawa, P. Koralewski, E. Kutarska, O. Kolesnik et al., The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial, International Journal of Cancer, vol.84, issue.Suppl, pp.2209-2221, 2010.
DOI : 10.1002/ijc.25423

M. Rosenblum, C. Verschraegen, J. Murray, A. Kudelka, J. Gano et al., Phase I study of 90Y-labeled B72.3 intraperitoneal administration in patients with ovarian cancer: effect of dose and EDTA coadministration on pharmacokinetics and toxicity, Clin Cancer Res, vol.5, pp.953-961, 1999.

C. Diefenbach, S. Gnjatic, P. Sabbatini, C. Aghajanian, M. Hensley et al., Safety and Immunogenicity Study of NY-ESO-1b Peptide and Montanide ISA-51 Vaccination of Patients with Epithelial Ovarian Cancer in High-Risk First Remission, Clinical Cancer Research, vol.14, issue.9, pp.2740-2748, 2008.
DOI : 10.1158/1078-0432.CCR-07-4619

N. Leffers, A. Lambeck, M. Gooden, B. Hoogeboom, R. Wolf et al., Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial, International Journal of Cancer, vol.14, issue.9, pp.2104-2113, 2009.
DOI : 10.1002/ijc.24597

M. Disis, T. Gooley, K. Rinn, D. Davis, M. Piepkorn et al., Generation of T-cell immunity to the HER-2/neu protein after active immunization with

K. Chianese-bullock, W. Irvin, . Jr, G. Petroni, C. Murphy et al., A Multipeptide Vaccine is Safe and Elicits T-cell Responses in Participants With Advanced Stage Ovarian Cancer, Journal of Immunotherapy, vol.31, issue.4, pp.420-430, 2008.
DOI : 10.1097/CJI.0b013e31816dad10

J. Gulley, P. Arlen, K. Tsang, J. Yokokawa, C. Palena et al., Pilot Study of Vaccination with Recombinant CEA-MUC-1-TRICOM Poxviral-Based Vaccines in Patients with Metastatic Carcinoma, Clinical Cancer Research, vol.14, issue.10, pp.3060-3069, 2008.
DOI : 10.1158/1078-0432.CCR-08-0126

J. Hernando, T. Park, H. Fischer, O. Zivanovic, M. Braun et al., Vaccination with dendritic cells transfected with mRNA-encoded folate-receptor-?? for relapsed metastatic ovarian cancer, The Lancet Oncology, vol.8, issue.5, pp.451-454, 2007.
DOI : 10.1016/S1470-2045(07)70142-0

P. Brossart, S. Wirths, G. Stuhler, V. Reichardt, L. Kanz et al., Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells, Blood, vol.96, pp.3102-3108, 2000.

J. Hernando, T. Park, K. Kubler, R. Offergeld, H. Schlebusch et al., Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial, Cancer Immunology, Immunotherapy, vol.51, issue.1, pp.45-52, 2002.
DOI : 10.1007/s00262-001-0255-1

X. Zhao, Y. Wei, and Z. Peng, INDUCTION OF T CELL RESPONSES AGAINST AUTOLOGOUS OVARIAN TUMORS WITH WHOLE TUMOR CELL LYSATE-PULSED DENDRITIC CELLS, Immunological Investigations, vol.24, issue.24, pp.33-45, 2001.
DOI : 10.1081/IMM-100103689

Y. Aoki, K. Takakuwa, S. Kodama, K. Tanaka, M. Takahashi et al., Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer, Cancer Res, vol.51, pp.1934-1939, 1991.

R. Freedman, C. Edwards, J. Kavanagh, A. Kudelka, R. Katz et al., Intraperitoneal Adoptive Immunotherapy of Ovarian Carcinoma with Tumor-Infiltrating Lymphocytes and Low-Dose Recombinant Interleukin-2, Journal of Immunotherapy, vol.16, issue.3
DOI : 10.1097/00002371-199410000-00004

K. Fujita, H. Ikarashi, K. Takakuwa, S. Kodama, A. Tokunaga et al., Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes, Clin Cancer Res, vol.1, pp.501-507, 1995.

M. Kershaw, J. Westwood, L. Parker, G. Wang, Z. Eshhar et al., A Phase I Study on Adoptive Immunotherapy Using Gene-Modified T Cells for Ovarian Cancer, Clinical Cancer Research, vol.12, issue.20, pp.6106-6115, 2006.
DOI : 10.1158/1078-0432.CCR-06-1183

M. Dobrzanski, K. Rewers-felkins, I. Quinlin, K. Samad, C. Phillips et al., Autologous MUC1-specific Th1 effector cell immunotherapy induces differential levels of systemic TReg cell subpopulations that result in increased ovarian cancer patient survival, Clinical Immunology, vol.133, issue.3, pp.333-352, 2009.
DOI : 10.1016/j.clim.2009.08.007

K. Curran, H. Pegram, and R. Brentjens, Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions, The Journal of Gene Medicine, vol.365, issue.6, pp.405-415, 2012.
DOI : 10.1002/jgm.2604

M. Sadelain, R. Brentjens, and I. Riviere, The Basic Principles of Chimeric Antigen Receptor Design, Cancer Discovery, vol.3, issue.4, pp.388-398, 2013.
DOI : 10.1158/2159-8290.CD-12-0548

D. Berd, H. Maguire, . Jr, and M. Mastrangelo, Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide, Cancer Res, vol.46, pp.2572-2577, 1986.

F. Ghiringhelli, C. Menard, P. Puig, S. Ladoire, S. Roux et al., Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients, Cancer Immunology, Immunotherapy, vol.95, issue.5, pp.641-648, 2007.
DOI : 10.1007/s00262-006-0225-8

P. Attia, A. Maker, L. Haworth, L. Rogers-freezer, and S. Rosenberg, Inability of a Fusion Protein of IL-2 and Diphtheria Toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to Eliminate Regulatory T Lymphocytes in Patients With Melanoma, Journal of Immunotherapy, vol.28, issue.6, pp.582-592, 2005.
DOI : 10.1097/01.cji.0000175468.19742.10

A. Rech, R. Mick, S. Martin, A. Recio, N. Aqui et al., CD25 Blockade Depletes and Selectively Reprograms Regulatory T Cells in Concert with Immunotherapy in Cancer Patients, Science Translational Medicine, vol.4, issue.134, pp.25134-162, 2012.
DOI : 10.1126/scitranslmed.3003330

B. Barnett, I. Kryczek, P. Cheng, W. Zou, and T. Curiel, Regulatory T Cells in Ovarian Cancer: Biology and Therapeutic Potential, American Journal of Reproductive Immunology, vol.168, issue.6, pp.369-377, 2005.
DOI : 10.1038/ni904

R. Sutmuller, L. Van-duivenvoorde, A. Van-elsas, T. Schumacher, M. Wildenberg et al., Regulatory T Cells in Antitumor Therapy Reveals Alternative Pathways for Suppression of Autoreactive Cytotoxic T Lymphocyte Responses, The Journal of Experimental Medicine, vol.60, issue.6, pp.823-832, 2001.
DOI : 10.1084/jem.190.5.705

C. Wilke, I. Kryczek, S. Wei, E. Zhao, K. Wu et al., Th17 cells in cancer: help or hindrance? Carcinogenesis, pp.643-649, 2011.

T. Greten, F. Zhao, J. Gamrekelashvili, and F. Korangy, Human Th17 cells in patients with cancer, OncoImmunology, vol.1, issue.8, pp.1438-1439, 2012.
DOI : 10.1038/ni1467

N. Martin-orozco, P. Muranski, Y. Chung, X. Yang, T. Yamazaki et al., T Helper 17 Cells Promote Cytotoxic T Cell Activation in Tumor Immunity, Immunity, vol.31, issue.5, pp.787-798, 2009.
DOI : 10.1016/j.immuni.2009.09.014

K. Charles, H. Kulbe, R. Soper, M. Escorcio-correia, T. Lawrence et al., The tumor-promoting actions of TNF-?? involve TNFR1 and IL-17 in ovarian cancer in mice and humans, Journal of Clinical Investigation, vol.119, issue.10, pp.3011-3023, 2009.
DOI : 10.1172/JCI39065DS1

URL : https://hal.archives-ouvertes.fr/hal-00499385

X. Wu, V. Lee, C. E. Hwang, and S. , Chemokine Receptors as Targets for Cancer Therapy, Current Pharmaceutical Design, vol.15, issue.7, pp.742-757, 2009.
DOI : 10.2174/138161209787582165

H. Pere, Y. Montier, J. Bayry, F. Quintin-colonna, N. Merillon et al., A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens, Blood, vol.118, issue.18, pp.4853-4862, 2011.
DOI : 10.1182/blood-2011-01-329656

URL : https://hal.archives-ouvertes.fr/pasteur-00711130

M. Zollo, D. Dato, V. Spano, D. , D. Martino et al., Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models, Clinical & Experimental Metastasis, vol.117, issue.4, pp.585-601, 2012.
DOI : 10.1007/s10585-012-9473-5

A. Sevko and V. Umansky, Myeloid-Derived Suppressor Cells Interact with Tumors in Terms of Myelopoiesis, Tumorigenesis and Immunosuppression: Thick as Thieves, Journal of Cancer, vol.4, issue.1, pp.3-11, 2013.
DOI : 10.7150/jca.5047

N. Mirza, M. Fishman, I. Fricke, M. Dunn, A. Neuger et al., All-trans-Retinoic Acid Improves Differentiation of Myeloid Cells and Immune Response in Cancer Patients, Cancer Research, vol.66, issue.18, pp.9299-9307, 2006.
DOI : 10.1158/0008-5472.CAN-06-1690

M. Shurin, H. Naiditch, D. Gutkin, V. Umansky, and G. Shurin, ChemoImmunoModulation: Immune Regulation by the Antineoplastic Chemotherapeutic Agents, Current Medicinal Chemistry, vol.19, issue.12, pp.1792-1803
DOI : 10.2174/092986712800099785

I. Melero, A. Grimaldi, J. Perez-gracia, and P. Ascierto, Clinical Development of Immunostimulatory Monoclonal Antibodies and Opportunities for Combination, Clinical Cancer Research, vol.19, issue.5, pp.997-1008, 2013.
DOI : 10.1158/1078-0432.CCR-12-2214

K. Peggs, S. Quezada, C. Chambers, A. Korman, and J. Allison, Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti???CTLA-4 antibodies, The Journal of Experimental Medicine, vol.59, issue.8, pp.1717-1725, 2009.
DOI : 10.1126/science.1160062

F. Hodi, M. Butler, D. Oble, M. Seiden, F. Haluska et al., Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients, Proceedings of the National Academy of Sciences, vol.105, issue.8, pp.3005-3010, 2008.
DOI : 10.1073/pnas.0712237105

K. Abiko, M. Mandai, J. Hamanishi, Y. Yoshioka, N. Matsumura et al., PD-L1 on Tumor Cells Is Induced in Ascites and Promotes Peritoneal Dissemination of Ovarian Cancer through CTL Dysfunction, Clinical Cancer Research, vol.19, issue.6, pp.1363-1374, 2013.
DOI : 10.1158/1078-0432.CCR-12-2199

S. Topalian, F. Hodi, J. Brahmer, S. Gettinger, D. Smith et al., Sznol M: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer, N Engl J Med, vol.2012, issue.26, pp.3662443-245410, 1056.

R. Karim, E. Jordanova, S. Piersma, G. Kenter, L. Chen et al., Tumor-Expressed B7-H1 and B7-DC in Relation to PD-1+ T-Cell Infiltration and Survival of Patients with Cervical Carcinoma, Clinical Cancer Research, vol.15, issue.20, pp.6341-6347, 2009.
DOI : 10.1158/1078-0432.CCR-09-1652

J. Brahmer, S. Tykodi, L. Chow, W. Hwu, S. Topalian et al., Safety and Activity of Anti???PD-L1 Antibody in Patients with Advanced Cancer, New England Journal of Medicine, vol.366, issue.26, pp.2455-2465, 2012.
DOI : 10.1056/NEJMoa1200694

O. Hamid and R. Carvajal, Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy, Expert Opinion on Biological Therapy, vol.26, issue.4, pp.847-861
DOI : 10.1056/NEJMe1205943

D. Benson, . Jr, C. Hofmeister, S. Padmanabhan, A. Suvannasankha et al., A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma, Blood, vol.120, issue.22, pp.4324-4333, 2012.
DOI : 10.1182/blood-2012-06-438028

N. Vey, J. Bourhis, N. Boissel, D. Bordessoule, T. Prebet et al., A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission, Blood, vol.120, issue.22, pp.4317-4323, 2012.
DOI : 10.1182/blood-2012-06-437558

X. Liu, N. Shin, H. Koblish, G. Yang, Q. Wang et al., Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity, Blood, vol.115, issue.17, pp.3520-3530, 2010.
DOI : 10.1182/blood-2009-09-246124

P. Sinha, V. Clements, A. Fulton, and S. Ostrand-rosenberg, Prostaglandin E2 Promotes Tumor Progression by Inducing Myeloid-Derived Suppressor Cells, Cancer Research, vol.67, issue.9, pp.4507-4513, 2007.
DOI : 10.1158/0008-5472.CAN-06-4174

J. Veltman, M. Lambers, M. Van-nimwegen, R. Hendriks, H. Hoogsteden et al., COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function, BMC Cancer, vol.18, issue.1, p.464, 2010.
DOI : 10.1158/1055-9965.EPI-08-0705

N. Arber, C. Eagle, J. Spicak, I. Racz, P. Dite et al., Celecoxib for the Prevention of Colorectal Adenomatous Polyps, New England Journal of Medicine, vol.355, issue.9, pp.885-895, 2006.
DOI : 10.1056/NEJMoa061652

T. Rogers and I. Holen, Tumour macrophages as potential targets of bisphosphonates, Journal of Translational Medicine, vol.9, issue.1, p.177, 2011.
DOI : 10.1023/A:1013026313647

J. Veltman, M. Lambers, M. Van-nimwegen, R. Hendriks, H. Hoogsteden et al., Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma, British Journal of Cancer, vol.91, issue.5, pp.629-641, 2010.
DOI : 10.1038/sj.bjc.6603240