A. Ciccia and S. Elledge, The DNA Damage Response: Making It Safe to Play with Knives, Molecular Cell, vol.40, issue.2, pp.179-204, 2010.
DOI : 10.1016/j.molcel.2010.09.019

F. Derheimer, . Kastan, and . Mb, Multiple roles of ATM in monitoring and maintaining DNA integrity, FEBS Letters, vol.4, issue.17, pp.3675-3681, 2010.
DOI : 10.1016/j.febslet.2010.05.031

A. Kinner, W. Wu, C. Staudt, and . Iliakis, ??-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin, Nucleic Acids Research, vol.36, issue.17, pp.5678-5694, 2008.
DOI : 10.1093/nar/gkn550

W. Bonner, C. Redon, J. Dickey, A. Nakamura, . Sedelnikova et al., ??H2AX and cancer, Nature Reviews Cancer, vol.69, issue.12, pp.957-967, 2008.
DOI : 10.1158/0008-5472.CAN-05-4275

L. Mah, A. El-osta, . Karagiannis, and . Tc, ??H2AX: a sensitive molecular marker of DNA damage and repair, Leukemia, vol.678, issue.4, pp.679-686, 2010.
DOI : 10.1002/cyto.a.20426

J. Nougayrède, S. Homburg, F. Taieb, M. Boury, and E. Brzuszkiewicz, Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells, Science, vol.313, issue.5788, pp.848-851, 2006.
DOI : 10.1126/science.1127059

G. Cuevas-ramos, C. Petit, I. Marcq, M. Boury, and E. Oswald, Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells, Proceedings of the National Academy of Sciences, vol.107, issue.25, pp.11537-11542, 2010.
DOI : 10.1073/pnas.1001261107

M. Lara-tejero and J. Galán, A Bacterial Toxin That Controls Cell Cycle Progression as a Deoxyribonuclease I-Like Protein, Science, vol.290, issue.5490, pp.354-357, 2000.
DOI : 10.1126/science.290.5490.354

L. Li, A. Sharipo, E. Chaves-olarte, M. Masucci, and V. Levitsky, The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells, Cellular Microbiology, vol.68, issue.2, pp.87-99, 2002.
DOI : 10.1128/IAI.69.3.1938-1942.2001

E. Oswald, J. Nougayrède, F. Taieb, and M. Sugai, Bacterial toxins that modulate host cell-cycle progression, Current Opinion in Microbiology, vol.8, issue.1, pp.83-91, 2005.
DOI : 10.1016/j.mib.2004.12.011

A. Kunz and I. Brook, Emerging Resistant Gram-Negative Aerobic Bacilli in Hospital-Acquired Infections, Chemotherapy, vol.56, issue.6, pp.492-500, 2010.
DOI : 10.1159/000321018

K. Kerr and A. M. Snelling, Pseudomonas aeruginosa: a formidable and ever-present adversary, Journal of Hospital Infection, vol.73, issue.4, pp.338-344, 2009.
DOI : 10.1016/j.jhin.2009.04.020

M. Wu, H. Huang, W. Zhang, S. Kannan, and A. Weaver, Host DNA Repair Proteins in Response to Pseudomonas aeruginosa in Lung Epithelial Cells and in Mice, Infection and Immunity, vol.79, issue.1, pp.75-87, 2011.
DOI : 10.1128/IAI.00815-10

S. David, O. Shea, . Vl, and S. Kundu, Base-excision repair of oxidative DNA damage, Nature, vol.9, issue.7147, pp.941-950, 2007.
DOI : 10.1038/nature05978

J. L. Veesenmeyer, A. Hauser, T. Lisboa, and J. Rello, Pseudomonas aeruginosa virulence and therapy: Evolving translational strategies*, Critical Care Medicine, vol.37, issue.5, pp.1777-1786, 2009.
DOI : 10.1097/CCM.0b013e31819ff137

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749241

A. Roy-burman, R. Savel, S. Racine, B. Swanson, and N. Revadigar, Infections, The Journal of Infectious Diseases, vol.183, issue.12, pp.1767-1774, 2001.
DOI : 10.1086/320737

A. Hauser, E. Cobb, M. Bodi, D. Mariscal, and J. Vallés, Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa, Critical Care Medicine, vol.30, issue.3, pp.521-528, 2002.
DOI : 10.1097/00003246-200203000-00005

A. Hauser, The type III secretion system of Pseudomonas aeruginosa: infection by injection, Nature Reviews Microbiology, vol.67, issue.9, pp.654-665, 2009.
DOI : 10.1038/nrmicro2199

Q. Deng and J. Barbieri, Molecular Mechanisms of the Cytotoxicity of ADP-Ribosylating Toxins, Annual Review of Microbiology, vol.62, issue.1, pp.271-288, 2008.
DOI : 10.1146/annurev.micro.62.081307.162848

S. Fink and B. Cookson, Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells, Infection and Immunity, vol.73, issue.4, pp.1907-1916, 2005.
DOI : 10.1128/IAI.73.4.1907-1916.2005

H. Grassmé, V. Jendrossek, and E. Gulbins, Molecular mechanisms of bacteria induced apoptosis, APOPTOSIS, vol.6, issue.6, pp.441-445, 2001.
DOI : 10.1023/A:1012485506972

C. Aude-garcia, V. Collin-faure, H. Bausinger, D. Hanau, and T. Rabilloud, Dual roles for MEF2A and MEF2D during human macrophage terminal differentiation and c-Jun expression, Biochemical Journal, vol.15, issue.2, pp.237-244, 2010.
DOI : 10.1074/jbc.M109.000539

URL : https://hal.archives-ouvertes.fr/hal-00509879

G. Rovera, D. Santoli, and C. Damsky, Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester., Proceedings of the National Academy of Sciences, vol.76, issue.6, pp.2779-2783, 1979.
DOI : 10.1073/pnas.76.6.2779

B. Toussaint, I. Delic-attree, and P. Vignais, Pseudomonas aeruginosa contains an IHFlike protein that binds to the algD Promoter, Biochem Biophys Res Commun, vol.196, pp.1-416, 1993.

C. Weston and R. Davis, The JNK signal transduction pathway, Current Opinion in Cell Biology, vol.19, issue.2, pp.142-149, 2007.
DOI : 10.1016/j.ceb.2007.02.001

J. Jia, M. Alaoui-el-azher, M. Chow, T. Chambers, and H. Baker, c-Jun NH2-Terminal Kinase-Mediated Signaling Is Essential for Pseudomonas aeruginosa ExoS-Induced Apoptosis, Infection and Immunity, vol.71, issue.6, pp.3361-3370, 2003.
DOI : 10.1128/IAI.71.6.3361-3370.2003

V. Jendrossek, H. Grassmé, I. Mueller, F. Lang, and E. Gulbins, Pseudomonas aeruginosa-Induced Apoptosis Involves Mitochondria and Stress-Activated Protein Kinases, Infection and Immunity, vol.69, issue.4, pp.2675-2683, 2001.
DOI : 10.1128/IAI.69.4.2675-2683.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC98206

E. Rucks and J. Olson, Characterization of an ExoS Type III Translocation-Resistant Cell Line, Infection and Immunity, vol.73, issue.1, pp.638-643, 2005.
DOI : 10.1128/IAI.73.1.638-643.2005

D. Bridge, M. Novotny, E. Moore, and J. Olson, Role of host cell polarity and leading edge properties in Pseudomonas type III secretion, Microbiology, vol.156, issue.2, pp.356-373, 2010.
DOI : 10.1099/mic.0.033241-0

T. Smeal, B. Binetruy, D. Mercola, M. Birrer, and K. M. , Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73, Nature, vol.354, issue.6353, pp.494-496, 1991.
DOI : 10.1038/354494a0

D. Dacheux, B. Toussaint, M. Richard, G. Brochier, and J. Croize, Pseudomonas aeruginosa Cystic Fibrosis Isolates Induce Rapid, Type III Secretion-Dependent, but ExoU-Independent, Oncosis of Macrophages and Polymorphonuclear Neutrophils, Infection and Immunity, vol.68, issue.5, pp.2916-2924, 2000.
DOI : 10.1128/IAI.68.5.2916-2924.2000

T. Yahr, L. Mende-mueller, M. Friese, and D. Frank, Identification of type III secreted products of the Pseudomonas aeruginosa exoenzyme S regulon., Journal of Bacteriology, vol.179, issue.22, pp.7165-7168, 1997.
DOI : 10.1128/jb.179.22.7165-7168.1997

U. Goehring, G. Schmidt, K. Pederson, K. Aktories, and J. Barbieri, The N-terminal Domain of Pseudomonas aeruginosaExoenzyme S Is a GTPase-activating Protein for Rho GTPases, Journal of Biological Chemistry, vol.274, issue.51, pp.36369-3672, 1999.
DOI : 10.1074/jbc.274.51.36369

J. Radke, K. Pederson, and J. Barbieri, Pseudomonas aeruginosa exoenzyme S is a biglutamic acid ADP-ribosyltransferase, Infect Immun, vol.67, pp.1508-1510, 1999.

C. Lu, F. Zhu, Y. Cho, F. Tang, and T. Yoga, Cell Apoptosis: Requirement of H2AX in DNA Ladder Formation, but Not for the Activation of Caspase-3, Molecular Cell, vol.23, issue.1, pp.121-132, 2006.
DOI : 10.1016/j.molcel.2006.05.023

Q. Deng, Y. Zhang, and J. Barbieri, Intracellular Trafficking of PseudomonasExoS, a Type III Cytotoxin, Traffic, vol.278, issue.10, pp.1331-1345, 2007.
DOI : 10.1111/j.1600-0854.2007.00626.x

M. Katsurahara, Y. Kobayashi, M. Iwasa, N. Ma, and H. Inoue, -Infected Gastric Mucosa, Helicobacter, vol.30, issue.6, pp.552-558, 2009.
DOI : 10.1111/j.1523-5378.2009.00719.x

. Hirakuy, S. Kawanishi, T. Ichinose, and M. Murata, The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis, Annals of the New York Academy of Sciences, vol.350, issue.Suppl., pp.15-22, 2010.
DOI : 10.1111/j.1749-6632.2010.05602.x

J. Jia, Y. Wang, L. Zhou, and J. S. , Expression of Pseudomonas aeruginosa Toxin ExoS Effectively Induces Apoptosis in Host Cells, Infection and Immunity, vol.74, issue.12, pp.6557-6570, 2006.
DOI : 10.1128/IAI.00591-06

D. Zio, V. Cianfanelli, and F. Cecconi, New insights into the link between DNA damage and apoptosis, Antioxid Redox Signal, 2012.

I. Toller, K. Neelsen, M. Steger, M. Hartung, and M. Hottiger, Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells, Proceedings of the National Academy of Sciences, vol.108, issue.36, pp.14944-14949, 2011.
DOI : 10.1073/pnas.1100959108

/. Exos, /. Exos, G. Cggatccgctgccgagccaag-complementation-of-exos-exos, /. Exos, /. Exos et al., Mutagenesis of exoS Recognition sequences for restriction enzymes are underlined and mutated nucleotides are in bold, Cellular and Molecular Life Sciences

3. , L. To-the-ptopo-exos, R. Ptopo-exos, and 2. , After cleavage with EcoRI and BamHI, the fragments were cloned into mini-CTX1 cut by the same enzymes, leading to pCTX-ExoS RK and pCTX-ExoS 2ED . The three mini-CTX-derived plasmids were introduced into the CHA?ExoS strain by triparental conjugation using the conjugative properties of the pRK2013. The transconjugants were selected on PIA plates containing tetracycline: plasmids were inserted at the chromosomal CTX attachment site (attB site) The pFLP2 plasmid was used to excise the Flp-recombinase target cassette. The complementation was checked by comparing the secreted ExoS toxins in the wild-type, mutated and complemented strains upon T3SS induction. SUPPLEMENTARY FIGURE LEGENDS Supplementary Fig. S1 Total extracts of cells infected by P. aeruginosa at a MOI ranging from 0 to 100 for 2 h 30. Western blot analysis of c-Jun. C: control undifferentiated HL60, M: macrophage HL60 Total c, 2002.

B. Toussaint, I. Delic-attree, and P. Vignais, Pseudomonas aeruginosa Contains an IHF-like Protein That Binds to the algD Promoter, Biochemical and Biophysical Research Communications, vol.196, issue.1, pp.416-421, 1993.
DOI : 10.1006/bbrc.1993.2265

D. Dacheux, I. Attree, C. Schneider, and B. Toussaint, Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional type III secretion system, Infect Immun, vol.67, pp.6164-6167, 1999.

J. Verove, C. Bernarde, Y. Bohn, F. Boulay, and M. Rabiet, Injection of Pseudomonas aeruginosa Exo Toxins into Host Cells Can Be Modulated by Host Factors at the Level of Translocon Assembly and/or Activity, PLoS ONE, vol.276, issue.1, p.30488, 2012.
DOI : 10.1371/journal.pone.0030488.s002

L. Quénée, D. Lamotte, and B. Polack, Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in Pseudomonas aeruginosa, BioTechniques, vol.38, issue.1, pp.63-67, 2005.
DOI : 10.2144/05381ST01

J. Butlin, G. Cox, and F. Gibson, K 12. Mutations affecting magnesium ion- or calcium ion-stimulated adenosine triphosphatase, Biochemical Journal, vol.124, issue.1, pp.75-81, 1971.
DOI : 10.1042/bj1240075

D. Figurski and D. Helinski, Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, Proceedings of the National Academy of Sciences, vol.76, issue.4, pp.1648-1652, 1979.
DOI : 10.1073/pnas.76.4.1648

T. Hoang, A. Kutchma, A. Becher, and H. P. Schweizer, Integration-Proficient Plasmids for Pseudomonas aeruginosa: Site-Specific Integration and Use for Engineering of Reporter and Expression Strains, Plasmid, vol.43, issue.1, pp.59-72, 2000.
DOI : 10.1006/plas.1999.1441

T. Hoang, R. Karkhoff-schweizer, A. Kutchma, and H. Schweizer, A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants, Gene, vol.212, issue.1, pp.77-86, 1998.
DOI : 10.1016/S0378-1119(98)00130-9