M. Laplante and D. M. Sabatini, mTOR signaling at a glance, Journal of Cell Science, vol.122, issue.20, pp.3589-3594, 2009.
DOI : 10.1242/jcs.051011

M. Rosner and M. Hengstschlager, Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1, Human Molecular Genetics, vol.17, issue.19, pp.2934-2948, 2008.
DOI : 10.1093/hmg/ddn192

D. D. Sarbassov, S. M. Ali, S. Sengupta, J. H. Sheen, P. P. Hsu et al., Prolonged Rapamycin Treatment Inhibits mTORC2 Assembly and Akt/PKB, Molecular Cell, vol.22, issue.2, pp.159-168, 2006.
DOI : 10.1016/j.molcel.2006.03.029

URL : http://doi.org/10.1016/j.molcel.2006.03.029

L. Shu and P. Houghton, The mTORC2 Complex Regulates Terminal Differentiation of C2C12 Myoblasts, Molecular and Cellular Biology, vol.29, issue.17, pp.4691-4700, 2009.
DOI : 10.1128/MCB.00764-09

Y. Sun, C. , and J. , mTOR signaling: PLD takes center stage, Cell Cycle, vol.7, issue.20, pp.3118-3123, 2008.
DOI : 10.4161/cc.7.20.6881

D. A. Foster, Phosphatidic acid signaling to mTOR: Signals for the survival of human cancer cells, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.9, pp.949-955, 2009.
DOI : 10.1016/j.bbalip.2009.02.009

P. Raghu, M. Manifava, J. Coadwell, and N. T. Ktistakis, Emerging findings from studies of phospholipase D in model organisms (and a short update on phosphatidic acid effectors), Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.9, pp.889-897, 2009.
DOI : 10.1016/j.bbalip.2009.03.013

A. Toschi, E. Lee, L. Xu, A. Garcia, N. Gadir et al., Regulation of mTORC1 and mTORC2 Complex Assembly by Phosphatidic Acid: Competition with Rapamycin, Molecular and Cellular Biology, vol.29, issue.6, pp.1411-1420, 2009.
DOI : 10.1128/MCB.00782-08

V. Veverka, T. Crabbe, I. Bird, G. Lennie, F. W. Muskett et al., Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR, Oncogene, vol.28, issue.5, pp.585-595, 2008.
DOI : 10.1038/ncb1594

T. A. Hornberger, W. K. Chu, Y. W. Mak, J. W. Hsiung, S. A. Huang et al., The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle, Proceedings of the National Academy of Sciences, vol.103, issue.12, pp.4741-4746, 2006.
DOI : 10.1073/pnas.0600678103

N. Kubica, D. R. Bolster, P. A. Farrell, S. R. Kimball, J. et al., Resistance Exercise Increases Muscle Protein Synthesis and Translation of Eukaryotic Initiation Factor 2B?? mRNA in a Mammalian Target of Rapamycin-dependent Manner, Journal of Biological Chemistry, vol.280, issue.9, pp.7570-7580, 2005.
DOI : 10.1074/jbc.M413732200

M. Ohanna, A. K. Sobering, T. Lapointe, L. Lorenzo, C. Praud et al., Atrophy of S6K1???/??? skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control, Nature Cell Biology, vol.279, issue.3, pp.286-294, 2005.
DOI : 10.1093/emboj/17.22.6649

Y. Ge, A. L. Wu, C. Warnes, J. Liu, C. Zhang et al., mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms, AJP: Cell Physiology, vol.297, issue.6, pp.1434-1444, 2009.
DOI : 10.1152/ajpcell.00248.2009

S. A. Coolican, D. S. Samuel, D. Z. Ewton, F. J. Mcwade, and F. , The Mitogenic and Myogenic Actions of Insulin-like Growth Factors Utilize Distinct Signaling Pathways, Journal of Biological Chemistry, vol.272, issue.10, pp.6653-6662, 1997.
DOI : 10.1074/jbc.272.10.6653

A. Cuenda and P. Cohen, Stress-activated Protein Kinase-2/p38 and a Rapamycin-sensitive Pathway Are Required for C2C12 Myogenesis, Journal of Biological Chemistry, vol.274, issue.7, pp.4341-4346, 1999.
DOI : 10.1074/jbc.274.7.4341

E. Erbay, C. , and J. , The Mammalian Target of Rapamycin Regulates C2C12 Myogenesis via a Kinase-independent Mechanism, Journal of Biological Chemistry, vol.276, issue.39, pp.36079-36082, 2001.
DOI : 10.1074/jbc.C100406200

L. Shu, X. Zhang, and P. J. Houghton, Myogenic Differentiation Is Dependent on Both the Kinase Function and the N-terminal Sequence of Mammalian Target of Rapamycin, Journal of Biological Chemistry, vol.277, issue.19, pp.16726-16732, 2002.
DOI : 10.1074/jbc.M112285200

C. Breton, C. Haenggeli, C. Barberis, F. Heitz, C. R. Bader et al., Presence of Functional Oxytocin Receptors in Cultured Human Myoblasts, The Journal of Clinical Endocrinology & Metabolism, vol.87, issue.3, pp.1415-1418, 2002.
DOI : 10.1210/jcem.87.3.8537

H. Komati, A. Minasi, F. Naro, M. Lagarde, A. F. Prigent et al., Phorbol ester-induced differentiation of L6 myogenic cells involves phospholipase D activation, FEBS Letters, vol.482, issue.3, pp.409-414, 2004.
DOI : 10.1016/j.febslet.2004.10.036

H. Komati, F. Naro, S. Mebarek, V. De-arcangelis, S. Adamo et al., Phospholipase D Is Involved in Myogenic Differentiation through Remodeling of Actin Cytoskeleton, Molecular Biology of the Cell, vol.16, issue.3, pp.1232-1244, 2005.
DOI : 10.1091/mbc.E04-06-0459

S. Mebarek, H. Komati, F. Naro, C. Zeiller, M. Alvisi et al., Inhibition of de novo ceramide synthesis upregulates phospholipase D and enhances myogenic differentiation, Journal of Cell Science, vol.120, issue.3, pp.407-416, 2007.
DOI : 10.1242/jcs.03331

URL : https://hal.archives-ouvertes.fr/inserm-00276757

M. S. Yoon, C. , and J. , PLD regulates myoblast differentiation through the mTOR-IGF2 pathway, Journal of Cell Science, vol.121, issue.3, pp.282-289, 2008.
DOI : 10.1242/jcs.022566

L. Monovich, B. Mugrage, E. Quadros, K. Toscano, R. Tommasi et al., Optimization of Halopemide for Phospholipase D2 inhibition, Bioorganic & Medicinal Chemistry Letters, vol.17, issue.8, pp.2310-2311, 2007.
DOI : 10.1016/j.bmcl.2007.01.059

W. Su, O. Yeku, S. Olepu, A. Genna, J. S. Park et al., 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a Phospholipase D Pharmacological Inhibitor That Alters Cell Spreading and Inhibits Chemotaxis, Molecular Pharmacology, vol.75, issue.3, pp.437-446, 2009.
DOI : 10.1124/mol.108.053298

S. A. Scott, P. E. Selvy, J. R. Buck, H. P. Cho, T. L. Criswell et al., Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness, Nature Chemical Biology, vol.275, issue.2, pp.108-117, 2009.
DOI : 10.1038/nchembio.140

L. A. Julien, A. Carriere, J. Moreau, R. , and P. P. , mTORC1-Activated S6K1 Phosphorylates Rictor on Threonine 1135 and Regulates mTORC2 Signaling, Molecular and Cellular Biology, vol.30, issue.4, pp.908-921, 2010.
DOI : 10.1128/MCB.00601-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815569

C. C. Dibble, J. M. Asara, and B. D. Manning, Characterization of Rictor Phosphorylation Sites Reveals Direct Regulation of mTOR Complex 2 by S6K1, Molecular and Cellular Biology, vol.29, issue.21, pp.5657-5670, 2009.
DOI : 10.1128/MCB.00735-09

L. Wang, T. E. Harris, R. A. Roth, L. , and J. C. Jr, PRAS40 Regulates mTORC1 Kinase Activity by Functioning as a Direct Inhibitor of Substrate Binding, Journal of Biological Chemistry, vol.282, issue.27, pp.20036-20044, 2007.
DOI : 10.1074/jbc.M702376200

D. Kong, S. Dan, K. Yamazaki, Y. , and T. , Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39, European Journal of Cancer, vol.46, issue.6, pp.1111-1121, 2010.
DOI : 10.1016/j.ejca.2010.01.005

M. Thibonnier, M. K. Graves, M. S. Wagner, C. Auzan, E. Clauser et al., Structure, Sequence, Expression, and Chromosomal Localization of the Human V1aVasopressin Receptor Gene, Genomics, vol.31, issue.3, pp.327-334, 1996.
DOI : 10.1006/geno.1996.0055

T. Takahara, K. Hara, K. Yonezawa, H. Sorimachi, and T. Maeda, Nutrient-dependent Multimerization of the Mammalian Target of Rapamycin through the N-terminal HEAT Repeat Region, Journal of Biological Chemistry, vol.281, issue.39, pp.28605-28614, 2006.
DOI : 10.1074/jbc.M606087200

K. Uhlenbrock, M. Weiwad, R. Wetzker, G. Fischer, A. Wittinghofer et al., Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway, FEBS Letters, vol.283, issue.6, pp.965-970, 2009.
DOI : 10.1016/j.febslet.2009.02.015

C. Partovian, R. Ju, Z. W. Zhuang, K. A. Martin, and M. Simons, Syndecan-4 Regulates Subcellular Localization of mTOR Complex2 and Akt Activation in a PKC??-Dependent Manner in Endothelial Cells, Molecular Cell, vol.32, issue.1, pp.140-149, 2008.
DOI : 10.1016/j.molcel.2008.09.010

J. R. Grove, P. Banerjee, A. Balasubramanyam, P. J. Coffer, D. J. Price et al., Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini., Molecular and Cellular Biology, vol.11, issue.11, pp.5541-5550, 1991.
DOI : 10.1128/MCB.11.11.5541

N. Lehman, B. Ledford, D. Fulvio, M. Frondorf, K. Mcphail et al., Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR, The FASEB Journal, vol.21, issue.4, pp.1075-1087, 2007.
DOI : 10.1096/fj.06-6652com

M. Laser, V. S. Kasi, M. Hamawaki, G. T. Cooper, C. M. Kerr et al., Differential Activation of p70 and p85 S6 Kinase Isoforms during Cardiac Hypertrophy in the Adult Mammal, Journal of Biological Chemistry, vol.273, issue.38, pp.24610-24619, 1998.
DOI : 10.1074/jbc.273.38.24610

A. Kenessey and K. Ojamaa, Thyroid Hormone Stimulates Protein Synthesis in the Cardiomyocyte by Activating the Akt-mTOR and p70S6K Pathways, Journal of Biological Chemistry, vol.281, issue.30, pp.20666-20672, 2006.
DOI : 10.1074/jbc.M512671200

K. P. Sarker, L. , and K. Y. , L6 myoblast differentiation is modulated by Cdk5 via the PI3K???AKT???p70S6K signaling pathway, Oncogene, vol.23, issue.36, pp.6064-6070, 2004.
DOI : 10.1038/sj.onc.1207819

I. H. Park, C. , and J. , Mammalian Target of Rapamycin (mTOR) Signaling Is Required for a Late-stage Fusion Process during Skeletal Myotube Maturation, Journal of Biological Chemistry, vol.280, issue.36, pp.32009-32017, 2005.
DOI : 10.1074/jbc.M506120200

A. U. Trendelenburg, A. Meyer, D. Rohner, J. Boyle, S. Hatakeyama et al., Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size, AJP: Cell Physiology, vol.296, issue.6, pp.1258-1270, 2009.
DOI : 10.1152/ajpcell.00105.2009

J. Huang, S. Wu, C. L. Wu, and B. D. Manning, Signaling Events Downstream of Mammalian Target of Rapamycin Complex 2 Are Attenuated in Cells and Tumors Deficient for the Tuberous Sclerosis Complex Tumor Suppressors, Cancer Research, vol.69, issue.15, pp.6107-6114, 2009.
DOI : 10.1158/0008-5472.CAN-09-0975

P. R. Bois and G. C. Grosveld, FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts, The EMBO Journal, vol.22, issue.5, pp.1147-1157, 2003.
DOI : 10.1093/emboj/cdg116

D. D. Sarbassov, S. M. Ali, D. H. Kim, D. A. Guertin, R. R. Latek et al., Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton, Current Biology, vol.14, issue.14, pp.1296-1302, 2004.
DOI : 10.1016/j.cub.2004.06.054

T. Ikenoue, K. Inoki, Q. Yang, X. Zhou, and K. L. Guan, Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling, The EMBO Journal, vol.9, issue.14, pp.1919-1931, 2008.
DOI : 10.1038/emboj.2008.119

T. Hu and J. H. And-exton, Mechanisms of Regulation of Phospholipase D1 by Protein Kinase Calpha, Journal of Biological Chemistry, vol.278, issue.4, pp.2348-2355, 2003.
DOI : 10.1074/jbc.M210093200

E. Jacinto, R. Loewith, A. Schmidt, S. Lin, M. A. Ruegg et al., Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive, Nature Cell Biology, vol.59, issue.11, pp.1122-1128, 2004.
DOI : 10.1006/jmbi.2000.4042