A. Alavi and J. Axford, Sweet and sour: the impact of sugars on disease, Rheumatology, vol.47, issue.6, pp.760-770
DOI : 10.1093/rheumatology/ken081

B. Sendid, J. Poirot, M. Tabouret, A. Bonnin, D. Caillot et al., Combined detection of mannanaemia and antimannan antibodies as a strategy for the diagnosis of systemic infection caused by pathogenic Candida species, J Med Microbiol, issue.5, pp.51433-442, 2002.

J. Quinton, B. Sendid, D. Reumaux, P. Duthilleul, A. Cortot et al., Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role, Gut, vol.42, issue.6, pp.42788-791, 1998.
DOI : 10.1136/gut.42.6.788

C. Hedin, A. Stagg, K. Whelan, and J. Lindsay, Family studies in Crohn's disease: new horizons in understanding disease pathogenesis, risk and prevention: Figure 1, Gut, vol.61, issue.2, pp.61311-318
DOI : 10.1136/gut.2011.238568

D. Poulain, B. Sendid, I. Fajardy, P. Danze, and J. Colombel, Mother to child transmission of anti- S cerevisiae mannan antibodies (ASCA) in non-IBD families Reply, Gut, vol.47, issue.6, pp.47870-871, 2000.
DOI : 10.1136/gut.47.6.870a

S. Vermeire, S. Joossens, M. Peeters, F. Monsuur, G. Marien et al., Comparative study of ASCA (Anti???Saccharomyces cerevisiae antibody) assays in inflammatory bowel disease, Gastroenterology, vol.120, issue.4, pp.827-833, 2001.
DOI : 10.1053/gast.2001.22546

B. Sendid, J. Quinton, G. Charrier, O. Goulet, A. Cortot et al., Anti-Saccharomyces cerevisiae Mannan Antibodies in Familial Crohn's Disease, The American Journal of Gastroenterology, vol.113, issue.8, pp.931306-1310, 1998.
DOI : 10.1093/hmg/5.10.1679

A. Standaert-vitse, T. Jouault, P. Vandewalle, C. Mille, M. Seddik et al., Candida albicans Is an Immunogen for Anti???Saccharomyces cerevisiae Antibody Markers of Crohn???s Disease, Gastroenterology, vol.130, issue.6, pp.1301764-1775, 2006.
DOI : 10.1053/j.gastro.2006.02.009

I. Dotan, S. Fishman, Y. Dgani, M. Schwartz, A. Karban et al., Antibodies Against Laminaribioside and Chitobioside Are Novel Serologic Markers in Crohn???s Disease, Gastroenterology, vol.131, issue.2, pp.366-378, 2006.
DOI : 10.1053/j.gastro.2006.04.030

B. Sendid, N. Dotan, S. Nseir, C. Savaux, P. Vandewalle et al., Antibodies against Glucan, Chitin, and Saccharomyces cerevisiae Mannan as New Biomarkers of Candida albicans Infection That Complement Tests Based on C. albicans Mannan, Clinical and Vaccine Immunology, vol.15, issue.12, pp.151868-1877, 2008.
DOI : 10.1128/CVI.00200-08

A. Franke, D. Mcgovern, J. Barrett, K. Wang, G. Radford-smith et al., Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci, Nature Genetics, vol.114, issue.12, pp.421118-1125, 2010.
DOI : 10.1046/j.1365-2036.2001.00981.x

J. Hugot, M. Chamaillard, H. Zouali, S. Lesage, J. Cézard et al., Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease, Nature, issue.6837, pp.411599-603, 2001.

L. Bouchier-hayes, H. Conroy, H. Egan, C. Adrain, E. Creagh et al., CARDINAL, a novel caspase recruitment domain protein, is an inhibitor of multiple NF-kappa B activation pathways, J Biol Chem, issue.47, pp.27644069-44077, 2001.

L. Agostini, F. Martinon, K. Burns, M. Mcdermott, P. Hawkins et al., NALP3 Forms an IL-1??-Processing Inflammasome with Increased Activity in Muckle-Wells Autoinflammatory Disorder, Immunity, vol.20, issue.3, pp.319-325, 2004.
DOI : 10.1016/S1074-7613(04)00046-9

F. Martinon and J. Tschopp, Inflammatory Caspases, Cell, vol.117, issue.5, pp.561-574, 2004.
DOI : 10.1016/j.cell.2004.05.004

V. Hornung, F. Bauernfeind, A. Halle, E. Samstad, H. Kono et al., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization, Nature Immunology, vol.109, issue.8, pp.847-856, 2008.
DOI : 10.1016/0008-8749(88)90236-5

A. Hise, J. Tomalka, S. Ganesan, K. Patel, B. Hall et al., An Essential Role for the NLRP3 Inflammasome in Host Defense against the Human Fungal Pathogen Candida albicans, Cell Host & Microbe, vol.5, issue.5, pp.487-497, 2009.
DOI : 10.1016/j.chom.2009.05.002

S. Joly, N. Ma, J. Sadler, D. Soll, S. Cassel et al., Cutting Edge: Candida albicans Hyphae Formation Triggers Activation of the Nlrp3 Inflammasome, The Journal of Immunology, vol.183, issue.6, pp.3578-3581, 2009.
DOI : 10.4049/jimmunol.0901323

H. Kumar, Y. Kumagai, T. Tsuchida, P. Koenig, T. Satoh et al., Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan, J Immunol, issue.12, pp.1838061-8067, 2009.

N. Saïd-sadier, E. Padilla, G. Langsley, and D. Ojcius, Aspergillus fumigatus Stimulates the NLRP3 Inflammasome through a Pathway Requiring ROS Production and the Syk Tyrosine Kinase, PLoS ONE, vol.10, issue.4, p.10008, 2010.
DOI : 10.1371/journal.pone.0010008.g005

S. Bellocchio, C. Montagnoli, S. Bozza, R. Gaziano, G. Rossi et al., The Contribution of the Toll-Like/IL-1 Receptor Superfamily to Innate and Adaptive Immunity to Fungal Pathogens In Vivo, The Journal of Immunology, vol.172, issue.5, pp.3059-3069, 2004.
DOI : 10.4049/jimmunol.172.5.3059

A. Mencacci, A. Bacci, E. Cenci, C. Montagnoli, S. Fiorucci et al., Interleukin 18 Restores Defective Th1 Immunity to Candida albicans in Caspase 1-Deficient Mice, Infection and Immunity, vol.68, issue.9, pp.685126-5131, 2000.
DOI : 10.1128/IAI.68.9.5126-5131.2000

M. Netea, A. Simon, F. Van-de-veerdonk, B. Kullberg, J. Van-der-meer et al., IL-1?? Processing in Host Defense: Beyond the Inflammasomes, IL-1beta Processing in Host Defense: Beyond the Inflammasomes, p.1000661, 2010.
DOI : 10.1371/journal.ppat.1000661.t001

R. Stuyt, M. Netea, I. Verschueren, G. Fantuzzi, C. Dinarello et al., Role of Interleukin-18 in Host Defense against Disseminated Candida albicans Infection, Infection and Immunity, vol.70, issue.6, pp.3284-3286, 2002.
DOI : 10.1128/IAI.70.6.3284-3286.2002

. Vonkag, . Neteamg, and . Iwakuray, Endogenous interleukin (IL)-1 alpha and IL-1 beta are crucial for host defense against disseminated candidiasis, pp.1419-1426

S. Eisenbarth, O. Colegio, O. Connor, W. Sutterwala, F. Flavell et al., Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants, Nature, vol.103, issue.7198, pp.4531122-1126, 2008.
DOI : 10.1038/nature06939

M. Kool, V. Pétrilli, D. Smedt, T. Rolaz, A. Hammad et al., Cutting Edge: Alum Adjuvant Stimulates Inflammatory Dendritic Cells through Activation of the NALP3 Inflammasome, The Journal of Immunology, vol.181, issue.6, pp.1813755-3759, 2008.
DOI : 10.4049/jimmunol.181.6.3755

P. Kankkunen, L. Teirilä, J. Rintahaka, H. Alenius, H. Wolff et al., ,3)- {beta}-Glucans Activate Both Dectin-1 and NLRP3 Inflammasome in Human Macrophages, J Immunol, issue.111, pp.1846335-6342, 2010.

T. Petterson, J. Jendholm, A. Månsson, A. Bjartell, K. Riesbeck et al., Effects of NOD-like receptors in human B lymphocytes and crosstalk between NOD1/NOD2 and Toll-like receptors, Journal of Leukocyte Biology, vol.89, issue.2, pp.177-187, 2010.
DOI : 10.1189/jlb.0210061

F. Vasseur, B. Sendid, T. Jouault, A. Standaert-vitse, L. Dubuquoy et al., Variants of NOD1 and NOD2 genes display opposite associations with familial risk of Crohn's disease and anti-saccharomyces cerevisiae antibody levels, Inflamm Bowel Dis, vol.2012, issue.183, pp.430-438

T. Dassopoulos, C. Frangakis, M. Cruz-correa, M. Talor, C. Burek et al., Antibodies to Saccharomyces cerevisiae in Crohn??s disease, Inflammatory Bowel Diseases, vol.13, issue.2, pp.143-151, 2007.
DOI : 10.1002/ibd.20031

L. Henckaerts, M. Pierik, M. Joossens, M. Ferrante, P. Rutgeerts et al., Mutations in pattern recognition receptor genes modulate seroreactivity to microbial antigens in patients with inflammatory bowel disease, Gut, vol.56, issue.11, pp.561536-1542, 2007.
DOI : 10.1136/gut.2007.125468

A. Kastbom, M. Johansson, D. Verma, and P. Soderkvist, CARD8 p.C10X polymorphism is associated with inflammatory activity in early rheumatoid arthritis, Annals of the Rheumatic Diseases, vol.69, issue.4, pp.723-726, 2010.
DOI : 10.1136/ard.2008.106989

D. Mcgovern, H. Butler, T. Ahmad, M. Paolucci, D. Van-heel et al., TUCAN (CARD8) Genetic Variants and Inflammatory Bowel Disease, Gastroenterology, vol.131, issue.4, pp.1190-1196, 2006.
DOI : 10.1053/j.gastro.2006.08.008

R. Roberts, R. Topless, A. Phipps-green, R. Gearry, M. Barclay et al., Evidence of interaction of CARD8 rs2043211 with NALP3 rs35829419 in Crohn's disease, Genes and Immunity, vol.19, issue.4, pp.351-356, 2010.
DOI : 10.1016/0003-2697(88)90047-4

I. Schoultz, D. Verma, J. Halfvarsson, L. Törkvist, M. Fredrikson et al., Combined Polymorphisms in Genes Encoding the Inflammasome Components NALP3 and CARD8 Confer Susceptibility to Crohn's Disease in Swedish Men, The American Journal of Gastroenterology, vol.293, issue.5, pp.1180-1188, 2009.
DOI : 10.1097/TA.0b013e3181650fdf

F. Molinié, C. Gower-rousseau, T. Yzet, V. Merle, B. Grandbastien et al., Opposite evolution in incidence of Crohn's disease and ulcerative colitis in Northern France, pp.53843-848, 1988.

J. Satsangi, M. Silverberg, S. Vermeire, and J. Colombel, The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications, Gut, vol.55, issue.6, pp.749-753, 2006.
DOI : 10.1136/gut.2005.082909

J. Barrett, B. Fry, J. Maller, and M. Daly, Haploview: analysis and visualization of LD and haplotype maps, Bioinformatics, vol.21, issue.2, pp.263-265, 2005.
DOI : 10.1093/bioinformatics/bth457

G. Abecasis, L. Cardon, and W. Cookson, A General Test of Association for Quantitative Traits in Nuclear Families, The American Journal of Human Genetics, vol.66, issue.1, pp.279-292, 2000.
DOI : 10.1086/302698

P. Sham and D. Curtis, Monte Carlo tests for associations between disease and alleles at highly polymorphic loci, Annals of Human Genetics, vol.50, issue.1, pp.97-105, 1995.
DOI : 10.2307/2981577

X. Li, L. Conklin, and A. P. , New serological biomarkers of inflammatory bowel disease, World Journal of Gastroenterology, vol.14, issue.33, pp.5115-5124, 2008.
DOI : 10.3748/wjg.14.5115

S. Fisher, M. Mirza, C. Onnie, D. Soars, C. Lewis et al., Combined Evidence From Three Large British Association Studies Rejects TUCAN/CARD8 as an IBD Susceptibility Gene, Gastroenterology, vol.132, issue.5, pp.2078-2080, 2007.
DOI : 10.1053/j.gastro.2007.03.086

S. Yang, H. Kim, M. Hong, J. Lim, E. Choi et al., Association of CARD8 with inflammatory bowel disease in Koreans, Journal of Human Genetics, vol.19, issue.3, pp.217-223, 2011.
DOI : 10.1007/BF02237231

H. Takedatsu, K. Taylor, L. Mei, D. Mcgovern, C. Landers et al., Linkage of Crohn's disease-related serological phenotypes: NFKB1 haplotypes are associated with anti-CBir1 and ASCA, and show reduced NF-??B activation, Gut, vol.58, issue.1, pp.60-67, 2009.
DOI : 10.1136/gut.2008.156422

O. Von-kampen, S. Lipinski, A. Till, S. Martin, W. Nietfeld et al., Caspase Recruitment Domain-containing Protein 8 (CARD8) Negatively Regulates NOD2-mediated Signaling, Journal of Biological Chemistry, vol.285, issue.26, pp.28519921-19926, 2010.
DOI : 10.1074/jbc.M110.127480

C. Dinarello, IL-1: Discoveries, controversies and future directions, European Journal of Immunology, vol.360, issue.3, pp.599-606
DOI : 10.1002/eji.201040319

A. Nambu, S. Nakae, and Y. Iwakura, IL-1??, but not IL-1??, is required for antigen-specific T cell activation and the induction of local inflammation in the delayed-type hypersensitivity responses, International Immunology, vol.18, issue.5, pp.701-712, 2006.
DOI : 10.1093/intimm/dxl007

U. Harnack, U. Kellermann, and G. Pecher, Yeast-derived Beta-(1?3), (1?6)-D- glucan Induces Up-regulation of CD86 on Dectin-1-positive Human B- Lymphoma Cell Lines, Anticancer Res, issue.12, pp.314195-4199, 2011.

I. Puga, M. Cols, C. Barra, B. He, L. Cassis et al., B cell???helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen, Nature Immunology, vol.160, issue.2, pp.170-180, 2011.
DOI : 10.1073/pnas.1001061107

Y. Bordon, Antibody responses: Neutrophils zone in to help B cells, Nature Reviews Immunology, vol.2012, issue.122, p.73
DOI : 10.1038/nri3159

S. Dharancy, M. Body-malapel, A. Louvet, D. Berrebi, E. Gantier et al., Neutrophil Migration During Liver Injury Is Under Nucleotide-Binding Oligomerization Domain 1 Control, Gastroenterology, vol.138, issue.4, pp.1546-1556, 2010.
DOI : 10.1053/j.gastro.2009.12.008

R. Russell, B. Ip, M. Aldhous, M. Macdougall, H. Drummond et al., Anti-Saccharomyces cerevisiae Antibodies Status Is Associated with Oral Involvement and Disease Severity in Crohn Disease, Journal of Pediatric Gastroenterology and Nutrition, vol.48, issue.2, pp.161-167, 2009.
DOI : 10.1097/MPG.0b013e318183e112

L. Walker, M. Aldhous, H. Drummond, B. Smith, E. Nimmo et al., Anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn's disease are associated with disease severity but not NOD2/CARD15 mutations, Clinical and Experimental Immunology, vol.92, issue.3, pp.490-496, 2004.
DOI : 10.1128/IAI.70.12.6567-6575.2002

C. Dinarello, Immunological and Inflammatory Functions of the Interleukin-1 Family, Annual Review of Immunology, vol.27, issue.1, pp.519-550, 2009.
DOI : 10.1146/annurev.immunol.021908.132612

L. Rehaume, T. Jouault, and M. Chamaillard, Lessons from the inflammasome: a molecular sentry linking Candida and Crohn's disease, Trends in Immunology, vol.31, issue.5, pp.31171-175, 2010.
DOI : 10.1016/j.it.2010.01.007