J. Dixon, P. Bhathal, O. Brien, and . Pe, Nonalcoholic Fatty Liver Disease: Predictors of Nonalcoholic Steatohepatitis and Liver Fibrosis in the Severely Obese, Gastroenterology, vol.121, issue.1, pp.91-100, 2001.
DOI : 10.1053/gast.2001.25540

P. Angulo, J. Keach, K. Batts, and K. Lindor, Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis, Hepatology, vol.93, issue.6, pp.1356-62, 1999.
DOI : 10.1002/hep.510300604

P. Angulo, J. Hui, G. Marchesini, E. Bugianesi, J. George et al., The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD, Hepatology, vol.41, issue.4, pp.846-54, 2007.
DOI : 10.1002/hep.21496

G. Marchesini, E. Bugianesi, G. Forlani, F. Cerrelli, M. Lenzi et al., Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome, Hepatology, vol.289, issue.4, pp.917-940, 2003.
DOI : 10.1053/jhep.2003.50161

C. Day, Genetic and Environmental Susceptibility to Non-Alcoholic Fatty Liver Disease, Digestive Diseases, vol.28, issue.1, pp.255-260, 2010.
DOI : 10.1159/000282098

D. Wallace and V. Subramaniam, Co-factors in liver disease: The role of HFE-related hereditary hemochromatosis and iron, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.7
DOI : 10.1016/j.bbagen.2008.09.002

L. Valenti, A. Serri, A. Daly, E. Galmozzi, R. Rametta et al., Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease, Hepatology, vol.44, issue.4, pp.1209-1226, 2010.
DOI : 10.1002/hep.23622

N. Chalasani, X. Guo, R. Loomba, M. Goodarzi, T. Haritunians et al., Genome-Wide Association Study Identifies Variants Associated With Histologic Features of Nonalcoholic Fatty Liver Disease, Gastroenterology, vol.139, issue.5, pp.1567-1576
DOI : 10.1053/j.gastro.2010.07.057

K. Donnelly, C. Smith, S. Schwarzenberg, J. Jessurun, M. Boldt et al., Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease, Journal of Clinical Investigation, vol.115, issue.5, pp.1343-51, 2005.
DOI : 10.1172/JCI23621

E. Fabbrini, B. Mohammed, F. Magkos, K. Korenblat, B. Patterson et al., Alterations in Adipose Tissue and Hepatic Lipid Kinetics in Obese Men and Women With Nonalcoholic Fatty Liver Disease, Gastroenterology, vol.134, issue.2, pp.424-455, 2008.
DOI : 10.1053/j.gastro.2007.11.038

A. Amaro, E. Fabbrini, M. Kars, P. Yue, K. Schechtman et al., Dissociation Between Intrahepatic Triglyceride Content and Insulin Resistance in Familial Hypobetalipoproteinemia, Gastroenterology, vol.139, issue.1, pp.149-53, 2010.
DOI : 10.1053/j.gastro.2010.03.039

K. Yamaguchi, L. Yang, S. Mccall, J. Huang, X. Yu et al., Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis, Hepatology, vol.272, issue.6, pp.1366-74, 2007.
DOI : 10.1002/hep.21655

M. Monetti, M. Levin, M. Watt, M. Sajan, S. Marmor et al., Dissociation of Hepatic Steatosis and Insulin Resistance in Mice Overexpressing DGAT in the Liver, Cell Metabolism, vol.6, issue.1, pp.69-78, 2007.
DOI : 10.1016/j.cmet.2007.05.005

K. Yamaguchi, L. Yang, S. Mccall, J. Huang, X. Yu et al., Diacylglycerol acyltranferase 1 anti-sense oligonucleotides reduce hepatic fibrosis in mice with nonalcoholic steatohepatitis, Hepatology, vol.42, issue.2, pp.625-660, 2008.
DOI : 10.1002/hep.21988

P. Mathurin, A. Hollebecque, L. Arnalsteen, D. Buob, E. Leteurtre et al., Prospective Study of the Long-Term Effects of Bariatric Surgery on Liver Injury in Patients Without Advanced Disease, Gastroenterology, vol.137, issue.2, pp.532-572, 2009.
DOI : 10.1053/j.gastro.2009.04.052

I. Godsland, Insulin resistance and hyperinsulinaemia in the development and progression of cancer, Clinical Science, vol.26, issue.5, pp.315-347, 2010.
DOI : 10.1371/journal.pone.0002020

N. Lanthier, Y. Horsmans, and I. Leclercq, The metabolic syndrome: how it may influence hepatic stellate cell activation and hepatic fibrosis, Current Opinion in Clinical Nutrition and Metabolic Care, vol.12, issue.4, pp.404-415, 2009.
DOI : 10.1097/MCO.0b013e32832c7819

I. Leclercq, D. Silva-morais, A. Schroyen, B. , V. Hul et al., Insulin resistance in hepatocytes and sinusoidal liver cells: Mechanisms and consequences, Journal of Hepatology, vol.47, issue.1, pp.142-56, 2007.
DOI : 10.1016/j.jhep.2007.04.002

B. Viollet, B. Guigas, S. Garcia, N. Leclerc, J. Foretz et al., Cellular and molecular mechanisms of metformin: an overview, Clinical Science, vol.30, issue.6, pp.253-70, 2012.
DOI : 10.1002/mc.20637

URL : https://hal.archives-ouvertes.fr/inserm-00658070

V. Ratziu, S. Caldwell, and B. Neuschwander-tetri, Therapeutic trials in nonalcoholic steatohepatitis: Insulin sensitizers and related methodological issues, Hepatology, vol.96, issue.6, pp.2206-2221, 2010.
DOI : 10.1002/hep.24042

J. Odegaard, R. -. Gonzalez, R. Goforth, M. Morel, C. Subramanian et al., Macrophage-specific PPAR?? controls alternative activation and improves insulin resistance, Nature, vol.292, issue.7148, pp.1116-1136, 2007.
DOI : 10.1038/nature05894

C. Wu, E. Chu, C. Lam, A. Cheng, C. Lee et al., PPAR?? is essential for protection against nonalcoholic steatohepatitis, Gene Therapy, vol.58, issue.6, pp.790-798, 2010.
DOI : 10.1093/carcin/bgh160

F. Marra, E. Efsen, R. Romanelli, A. Caligiuri, S. Pastacaldi et al., Ligands of peroxisome proliferator-activated receptor ?? modulate profibrogenic and proinflammatory actions in hepatic stellate cells, Gastroenterology, vol.119, issue.2, pp.466-78, 2000.
DOI : 10.1053/gast.2000.9365

A. Galli, D. Crabb, E. Ceni, R. Salzano, T. Mello et al., Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro, Gastroenterology, vol.122, issue.7, pp.1924-1964, 2002.
DOI : 10.1053/gast.2002.33666

I. Leclercq, C. Sempoux, P. Starkel, and Y. Horsmans, Limited therapeutic efficacy of pioglitazone on progression of hepatic fibrosis in rats, Gut, vol.55, issue.7, pp.1020-1029, 2006.
DOI : 10.1136/gut.2005.079194

N. Chalasani, A. Sanyal, K. Kowdley, P. Robuck, J. Hoofnagle et al., Pioglitazone versus vitamin E versus placebo for the treatment of non-diabetic patients with non-alcoholic steatohepatitis: PIVENS trial design, Contemporary Clinical Trials, vol.30, issue.1, pp.88-96, 2009.
DOI : 10.1016/j.cct.2008.09.003

R. Lomonaco, C. Ortiz-lopez, B. Orsak, A. Webb, J. Hardies et al., Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease, Hepatology, vol.143, issue.5, pp.1389-97, 2012.
DOI : 10.1002/hep.25539

M. Watt and L. Spriet, Triacylglycerol lipases and metabolic control: implications for health and disease, AJP: Endocrinology and Metabolism, vol.299, pp.162-170, 2010.
DOI : 10.1152/ajpendo.00698.2009

C. Fuchs, T. Claudel, P. Kumari, G. Haemmerle, M. Pollheimer et al., Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice, Hepatology, vol.52, issue.1, pp.270-80, 2012.
DOI : 10.1002/hep.25601

L. Bazzichi, G. Giannaccini, L. Betti, L. Fabbrini, L. Schmid et al., ATP, calcium and magnesium levels in platelets of patients with primary fibromyalgia, Clinical Biochemistry, vol.41, issue.13, pp.1084-90, 2008.
DOI : 10.1016/j.clinbiochem.2008.06.012

S. Romeo, J. Kozlitina, C. Xing, A. Pertsemlidis, D. Cox et al., Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease, Nature Genetics, vol.164, issue.12, pp.1461-1466, 2008.
DOI : 10.1038/ng1984

L. Valenti, A. Alisi, E. Galmozzi, A. Bartuli, D. Menico et al., I148M patatin-like phospholipase domain-containing 3 gene variant and severity of pediatric nonalcoholic fatty liver disease, Hepatology, vol.58, issue.Suppl 1, pp.1274-80, 2010.
DOI : 10.1002/hep.23823

M. Kumari, G. Schoiswohl, C. Chitraju, M. Paar, I. Cornaciu et al., Adiponutrin Functions as a Nutritionally Regulated Lysophosphatidic Acid Acyltransferase, Cell Metabolism, vol.15, issue.5, pp.691-702, 2012.
DOI : 10.1016/j.cmet.2012.04.008

T. Kanneganti and V. Dixit, Immunological complications of obesity, Nature Immunology, vol.314, issue.8, pp.707-719, 2012.
DOI : 10.3945/ajcn.111.024927

C. Lumeng and A. Saltiel, Inflammatory links between obesity and metabolic disease, Journal of Clinical Investigation, vol.121, issue.6, pp.2111-2118, 2011.
DOI : 10.1172/JCI57132

M. Feuerer, L. Herrero, D. Cipolletta, A. Naaz, J. Wong et al., Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters, Nature Medicine, vol.38, issue.8, pp.930-939, 2009.
DOI : 10.1038/nm.2002

D. Wu, A. Molofsky, H. Liang, R. Ricardo-gonzalez, H. Jouihan et al., Eosinophils Sustain Adipose Alternatively Activated Macrophages Associated with Glucose Homeostasis, Science, vol.332, issue.6026, pp.243-250, 2011.
DOI : 10.1126/science.1201475

S. Weisberg, D. Hunter, R. Huber, J. Lemieux, S. Slaymaker et al., CCR2 modulates inflammatory and metabolic effects of high-fat feeding, Journal of Clinical Investigation, vol.116, issue.5, pp.115-139, 2006.
DOI : 10.1172/JCI24335C1

S. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue, Journal of Clinical Investigation, vol.112, issue.12, pp.1796-808, 2003.
DOI : 10.1172/JCI19246DS1

H. Xu, G. Barnes, Q. Yang, G. Tan, D. Yang et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, Journal of Clinical Investigation, vol.112, issue.12, pp.1821-1851, 2003.
DOI : 10.1172/JCI19451DS1

A. Bertola, V. Deveaux, S. Bonnafous, D. Rousseau, R. Anty et al., Elevated Expression of Osteopontin May Be Related to Adipose Tissue Macrophage Accumulation and Liver Steatosis in Morbid Obesity, Diabetes, vol.58, issue.1, pp.125-158, 2009.
DOI : 10.2337/db08-0400

URL : https://hal.archives-ouvertes.fr/hal-00419058

C. Postic and J. Girard, Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice, Journal of Clinical Investigation, vol.118, issue.3, pp.829-867, 2008.
DOI : 10.1172/JCI34275

D. Patsouris, P. Li, D. Thapar, J. Chapman, J. Olefsky et al., Ablation of CD11c-Positive Cells Normalizes Insulin Sensitivity in Obese Insulin Resistant Animals, Cell Metabolism, vol.8, issue.4
DOI : 10.1016/j.cmet.2008.08.015

J. Odegaard, R. -. Gonzalez, R. , R. Eagle, A. Vats et al., Alternative M2 Activation of Kupffer Cells by PPAR?? Ameliorates Obesity-Induced Insulin Resistance, Cell Metabolism, vol.7, issue.6, pp.496-507, 2008.
DOI : 10.1016/j.cmet.2008.04.003

X. Liao, N. Sharma, F. Kapadia, G. Zhou, Y. Lu et al., Kr??ppel-like factor 4 regulates macrophage polarization, Journal of Clinical Investigation, vol.121, issue.7, pp.2736-2785, 2011.
DOI : 10.1172/JCI45444DS1

X. Zhang, A. Xu, S. Chung, J. Cresser, G. Sweeney et al., Selective Inactivation of c-Jun NH2-Terminal Kinase in Adipose Tissue Protects Against Diet-Induced Obesity and Improves Insulin Sensitivity in Both Liver and Skeletal Muscle in Mice, Diabetes, vol.60, issue.2, pp.486-95, 2011.
DOI : 10.2337/db10-0650

M. Yuan, N. Konstantopoulos, J. Lee, L. Hansen, Z. Li et al., Reversal of Obesity- and Diet-Induced Insulin Resistance with Salicylates or Targeted Disruption of Ikkbeta, Science, vol.293, issue.5535, pp.1673-1680, 2001.
DOI : 10.1126/science.1061620

E. Fabbrini, D. Deivanayagam, S. Mohammed, B. Vitola, B. Klein et al., Alterations in Fatty Acid Kinetics in Obese Adolescents With Increased Intrahepatic Triglyceride Content, Obesity, vol.52, issue.Suppl 3, pp.25-34, 2009.
DOI : 10.1038/oby.2008.494

D. Van-der-poorten, K. Milner, J. Hui, A. Hodge, M. Trenell et al., Visceral fat: A key mediator of steatohepatitis in metabolic liver disease, Hepatology, vol.110, issue.2, pp.449-57, 2008.
DOI : 10.1002/hep.22350

S. Petta, M. Amato, D. Marco, V. Camma, C. Pizzolanti et al., Visceral adiposity index is associated with significant fibrosis in patients with non-alcoholic fatty liver disease, Alimentary Pharmacology & Therapeutics, vol.103, issue.2, pp.238-285, 2012.
DOI : 10.1111/j.1365-2036.2011.04929.x

F. Marra and C. Bertolani, Adipokines in liver diseases, Hepatology, vol.30, issue.3, pp.957-69, 2009.
DOI : 10.1002/hep.23046

C. Bertolani and F. Marra, Role of Adipocytokines in Hepatic Fibrosis, Current Pharmaceutical Design, vol.16, issue.17, pp.1929-1969, 2010.
DOI : 10.2174/138161210791208857

S. Choi, W. Syn, G. Karaca, A. Omenetti, C. Moylan et al., Leptin Promotes the Myofibroblastic Phenotype in Hepatic Stellate Cells by Activating the Hedgehog Pathway, Journal of Biological Chemistry, vol.285, issue.47, pp.36551-60, 2010.
DOI : 10.1074/jbc.M110.168542

X. Ding, N. Saxena, S. Lin, A. Xu, S. Srinivasan et al., The Roles of Leptin and Adiponectin, The American Journal of Pathology, vol.166, issue.6, pp.1655-69, 2005.
DOI : 10.1016/S0002-9440(10)62476-5

J. Handy, P. Fu, P. Kumar, J. Mells, S. Sharma et al., Adiponectin inhibits leptin signalling via multiple mechanisms to exert protective effects against hepatic fibrosis, Biochemical Journal, vol.272, issue.3, pp.385-95, 2011.
DOI : 10.1074/jbc.272.7.4065

S. Aleffi, N. Navari, W. Delogu, S. Galastri, E. Novo et al., Mammalian target of rapamycin mediates the angiogenic effects of leptin in human hepatic stellate cells, AJP: Gastrointestinal and Liver Physiology, vol.301, issue.2, pp.210-219, 2011.
DOI : 10.1152/ajpgi.00047.2010

Y. Yang, T. Tsai, Y. Huang, T. Lee, C. Chan et al., Hepatic endothelin-1 and endocannabinoids-dependent effects of hyperleptinemia in nonalcoholic steatohepatitis-cirrhotic rats, Hepatology, vol.278, issue.5, pp.1540-50, 2012.
DOI : 10.1002/hep.25534

J. Wang, I. Leclercq, J. Brymora, N. Xu, M. Ramezani-moghadam et al., Kupffer Cells Mediate Leptin-Induced Liver Fibrosis, Gastroenterology, vol.137, issue.2, pp.713-736, 2009.
DOI : 10.1053/j.gastro.2009.04.011

K. Imajo, K. Fujita, M. Yoneda, Y. Nozaki, Y. Ogawa et al., Hyperresponsivity to Low-Dose Endotoxin during Progression to Nonalcoholic Steatohepatitis Is Regulated by Leptin-Mediated Signaling, Cell Metabolism, vol.16, issue.1, pp.44-54, 2012.
DOI : 10.1016/j.cmet.2012.05.012

E. Javor, M. Ghany, E. Cochran, E. Oral, A. Depaoli et al., Leptin reverses nonalcoholic steatohepatitis in patients with severe lipodystrophy, Hepatology, vol.278, issue.4
DOI : 10.1002/hep.20672

J. Sennello, R. Fayad, A. Morris, R. Eckel, E. Asilmaz et al., Regulation of T Cell-Mediated Hepatic Inflammation by Adiponectin and Leptin, Endocrinology, vol.146, issue.5, pp.2157-64, 2005.
DOI : 10.1210/en.2004-1572

H. Tilg and A. Moschen, Adipocytokines: mediators linking adipose tissue, inflammation and immunity, Nature Reviews Immunology, vol.187, issue.10, pp.772-83, 2006.
DOI : 10.1038/nri1937

Y. Kamada, S. Tamura, S. Kiso, H. Matsumoto, Y. Saji et al., Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin, Gastroenterology, vol.125, issue.6, pp.1796-807, 2003.
DOI : 10.1053/j.gastro.2003.08.029

A. Xu, Y. Wang, H. Keshaw, L. Xu, K. Lam et al., The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice, Journal of Clinical Investigation, vol.112, issue.1, pp.91-100, 2003.
DOI : 10.1172/JCI200317797

A. Caligiuri, C. Bertolani, C. Guerra, S. Aleffi, S. Galastri et al., Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells, Hepatology, vol.115, issue.2, pp.668-76, 2008.
DOI : 10.1002/hep.21995

M. Adachi and D. Brenner, High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase, Hepatology, vol.40, issue.2, pp.677-85, 2008.
DOI : 10.1002/hep.21991

M. Parola and F. Marra, Adipokines and Redox Signaling: Impact on Fatty Liver Disease, Antioxidants & Redox Signaling, vol.15, issue.2, 2011.
DOI : 10.1089/ars.2010.3848

M. Iwabu, T. Yamauchi, M. Okada-iwabu, K. Sato, T. Nakagawa et al., Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca

H. Huang, P. Park, M. Mcmullen, and L. Nagy, Mechanisms for the anti-inflammatory effects of adiponectin in macrophages, Journal of Gastroenterology and Hepatology, vol.14, issue.s1, pp.50-53, 2008.
DOI : 10.1084/jem.174.6.1549

M. Massip-salcedo, M. Zaouali, S. Padrissa-altes, A. Casillas-ramirez, J. Rodes et al., Activation of peroxisome proliferator-activated receptor-?? inhibits the injurious effects of adiponectin in rat steatotic liver undergoing ischemia-reperfusion, Hepatology, vol.561, issue.2, pp.461-72, 2008.
DOI : 10.1002/hep.21935

P. Mandal, B. Pratt, M. Barnes, M. Mcmullen, and L. Nagy, Molecular Mechanism for Adiponectin-dependent M2 Macrophage Polarization: LINK BETWEEN THE METABOLIC AND INNATE IMMUNE ACTIVITY OF FULL-LENGTH ADIPONECTIN, Journal of Biological Chemistry, vol.286, issue.15, pp.13460-13469, 2011.
DOI : 10.1074/jbc.M110.204644

S. Polyzos, J. Kountouras, C. Zavos, and E. Tsiaousi, The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease, Diabetes, Obesity and Metabolism, vol.48, issue.Suppl. 7, pp.365-83, 2010.
DOI : 10.1111/j.1463-1326.2009.01176.x

M. Filkova, M. Haluzik, S. Gay, and L. Senolt, The role of resistin as a regulator of inflammation: Implications for various human pathologies, Clinical Immunology, vol.133, issue.2, pp.157-70, 2009.
DOI : 10.1016/j.clim.2009.07.013

C. Bertolani, P. Sancho-bru, P. Failli, R. Bataller, S. Aleffi et al., Resistin as an Intrahepatic Cytokine, The American Journal of Pathology, vol.169, issue.6, pp.2042-53, 2006.
DOI : 10.2353/ajpath.2006.060081

Y. Choi, S. Choi, E. Ha, Y. Kang, S. Han et al., Involvement of visfatin in palmitate-induced upregulation of inflammatory cytokines in hepatocytes, Metabolism, vol.60, issue.12, pp.1781-1790, 2011.
DOI : 10.1016/j.metabol.2011.05.003

E. Anderson, D. Gutierrez, and A. Hasty, Adipose tissue recruitment of leukocytes, Current Opinion in Lipidology, vol.21, issue.3, pp.172-179, 2010.
DOI : 10.1097/MOL.0b013e3283393867

S. Thatcher, F. Yiannikouris, M. Gupte, and L. Cassis, The adipose renin???angiotensin system: Role in cardiovascular disease, Molecular and Cellular Endocrinology, vol.302, issue.2, pp.111-118, 2009.
DOI : 10.1016/j.mce.2009.01.019

M. Morris, E. Fletcher, J. Thyfault, J. , S. Rector et al., The role of angiotensin II in nonalcoholic steatohepatitis, Mol Cell Endocrinol, 2012.

M. Moreno and R. Bataller, Cytokines and Renin-Angiotensin System Signaling in Hepatic Fibrosis, Clinics in Liver Disease, vol.12, issue.4, pp.825-52, 2008.
DOI : 10.1016/j.cld.2008.07.013

M. Arumugam, J. Raes, E. Pelletier, L. Paslier, D. Yamada et al., Enterotypes of the human gut microbiome, Nature, vol.106, issue.7346, pp.174-80, 2011.
DOI : 10.1038/nature09944

URL : https://hal.archives-ouvertes.fr/cea-00903625

P. Turnbaugh, R. Ley, M. Mahowald, V. Magrini, E. Mardis et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.20, issue.7122, pp.1027-1058, 2006.
DOI : 10.1038/nature05414

D. Compare, P. Coccoli, R. A. Nardone, O. , D. Maria et al., Gut???liver axis: The impact of gut microbiota on non alcoholic fatty liver disease, Nutrition, Metabolism and Cardiovascular Diseases, vol.22, issue.6, pp.471-477, 2012.
DOI : 10.1016/j.numecd.2012.02.007

H. Tilg and A. Kaser, Gut microbiome, obesity, and metabolic dysfunction, Journal of Clinical Investigation, vol.121, issue.6, pp.2126-2158, 2011.
DOI : 10.1172/JCI58109

M. Dumas, R. Barton, A. Toye, O. Cloarec, C. Blancher et al., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice, Proceedings of the National Academy of Sciences, vol.103, issue.33, pp.12511-12517, 2006.
DOI : 10.1073/pnas.0601056103

M. Spencer, T. Hamp, R. Reid, L. Fischer, S. Zeisel et al., Association Between Composition of the Human Gastrointestinal Microbiome and Development of Fatty Liver With Choline Deficiency, Gastroenterology, vol.140, issue.3, pp.976-86, 2011.
DOI : 10.1053/j.gastro.2010.11.049

J. Henao-mejia, E. Elinav, J. C. Hao, L. Mehal, W. Strowig et al., Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity, Nature, vol.7, pp.179-85, 2012.
DOI : 10.1038/nature10809

T. Csak, M. Ganz, J. Pespisa, K. Kodys, A. Dolganiuc et al., Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells, Hepatology, vol.286, issue.Suppl, pp.133-177, 2011.
DOI : 10.1002/hep.24341

R. Stienstra, J. Van-diepen, C. Tack, M. Zaki, F. Van-de-veerdonk et al., Inflammasome is a central player in the induction of obesity and insulin resistance, Proceedings of the National Academy of Sciences, vol.108, issue.37
DOI : 10.1073/pnas.1100255108

C. Thoma, C. Day, and M. Trenell, Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: A systematic review, Journal of Hepatology, vol.56, issue.1, pp.255-66, 2012.
DOI : 10.1016/j.jhep.2011.06.010

G. Musso, R. Gambino, D. Michieli, F. Cassader, M. Rizzetto et al., Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis, Hepatology, vol.46, issue.4, pp.909-925, 2003.
DOI : 10.1053/jhep.2003.50132

E. Mccarthy and M. Rinella, The Role of Diet and Nutrient Composition in Nonalcoholic Fatty Liver Disease, Journal of the Academy of Nutrition and Dietetics, vol.112, issue.3, pp.401-410, 2012.
DOI : 10.1016/j.jada.2011.10.007

H. Malhi, S. Bronk, N. Werneburg, and G. Gores, Free Fatty Acids Induce JNK-dependent Hepatocyte Lipoapoptosis, Journal of Biological Chemistry, vol.281, issue.17, pp.12093-101, 2006.
DOI : 10.1074/jbc.M510660200

L. Listenberger, X. Han, S. Lewis, S. Cases, R. Farese et al., Triglyceride accumulation protects against fatty acid-induced lipotoxicity, Proceedings of the National Academy of Sciences, vol.100, issue.6, pp.3077-82, 2003.
DOI : 10.1073/pnas.0630588100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC152249

S. Ibrahim, R. Kohli, and G. Gores, Mechanisms of Lipotoxicity in NAFLD and Clinical Implications, Journal of Pediatric Gastroenterology and Nutrition, vol.53, pp.131-171, 2011.
DOI : 10.1097/MPG.0b013e31822578db

L. Gillingham, S. Harris-janz, and P. Jones, Dietary Monounsaturated Fatty Acids Are Protective Against Metabolic Syndrome and Cardiovascular Disease Risk Factors, Lipids, vol.65, issue.5, pp.209-237, 2011.
DOI : 10.1007/s11745-010-3524-y

G. Masterton, J. Plevris, and P. Hayes, Review article: omega-3 fatty acids - a promising novel therapy for non-alcoholic fatty liver disease, Alimentary Pharmacology & Therapeutics, vol.51, issue.4A, pp.679-92, 2010.
DOI : 10.1111/j.1365-2036.2009.04230.x

H. Parker, N. Johnson, C. Burdon, J. Cohn, . Connor-'ht et al., Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis, Journal of Hepatology, vol.56, issue.4, pp.944-51, 2012.
DOI : 10.1016/j.jhep.2011.08.018

N. Sawada, M. Inoue, M. Iwasaki, S. Sasazuki, T. Shimazu et al., Consumption of n-3 Fatty Acids and Fish Reduces Risk of Hepatocellular Carcinoma, Gastroenterology, vol.142, issue.7
DOI : 10.1053/j.gastro.2012.02.018

A. Gonzalez-periz, R. Horrillo, N. Ferre, K. Gronert, B. Dong et al., Obesity-induced insulin resistance and hepatic steatosis are, p.3

M. Sekiya, N. Yahagi, T. Matsuzaka, Y. Najima, M. Nakakuki et al., Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression, Hepatology, vol.346, issue.6, pp.1529-1568, 2003.
DOI : 10.1016/j.hep.2003.09.028

H. Ishii, Y. Horie, S. Ohshima, Y. Anezaki, N. Kinoshita et al., Eicosapentaenoic acid ameliorates steatohepatitis and hepatocellular carcinoma in hepatocyte-specific Pten-deficient mice, Journal of Hepatology, vol.50, issue.3, pp.562-71, 2009.
DOI : 10.1016/j.jhep.2008.10.031

M. Itoh, T. Suganami, N. Satoh, K. Tanimoto-koyama, X. Yuan et al., Increased Adiponectin Secretion by Highly Purified Eicosapentaenoic Acid in Rodent Models of Obesity and Human Obese Subjects, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.9, pp.1918-1943, 2007.
DOI : 10.1161/ATVBAHA.106.136853

M. Mari, F. Caballero, A. Colell, A. Morales, J. Caballeria et al., Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis, Cell Metabolism, vol.4, issue.3
DOI : 10.1016/j.cmet.2006.07.006

D. Van-rooyen, C. Larter, W. Haigh, M. Yeh, G. Ioannou et al., Hepatic Free Cholesterol Accumulates in Obese, Diabetic Mice and Causes Nonalcoholic Steatohepatitis, Gastroenterology, vol.141, issue.4, pp.1393-403, 2011.
DOI : 10.1053/j.gastro.2011.06.040

G. Musso, M. Cassader, and R. Gambino, Cholesterol-lowering therapy for the treatment of nonalcoholic fatty liver disease, Current Opinion in Lipidology, vol.22, issue.6, pp.489-96, 2011.
DOI : 10.1097/MOL.0b013e32834c37ee

T. Mclaughlin, F. Abbasi, C. Lamendola, H. Yeni-komshian, and G. Reaven, Carbohydrate-Induced Hypertriglyceridemia: An Insight into the Link between Plasma Insulin and Triglyceride Concentrations, Journal of Clinical Endocrinology & Metabolism, vol.85, issue.9, pp.3085-3093, 2000.
DOI : 10.1210/jc.85.9.3085

H. Kang, J. Greenson, J. Omo, C. Chao, D. Peterman et al., Metabolic Syndrome Is Associated with Greater Histologic Severity, Higher Carbohydrate, and Lower Fat Diet in Patients with NAFLD, The American Journal of Gastroenterology, vol.12, issue.1, pp.2247-53, 2006.
DOI : 10.1097/00005768-200009001-00009

M. Ryan, F. Abbasi, C. Lamendola, S. Carter, and T. Mclaughlin, Serum Alanine Aminotransferase Levels Decrease Further With Carbohydrate Than Fat Restriction in Insulin-Resistant Adults, Diabetes Care, vol.30, issue.5, pp.1075-80, 2007.
DOI : 10.2337/dc06-2169

Y. Yilmaz, Review article: fructose in non-alcoholic fatty liver disease, Alimentary Pharmacology & Therapeutics, vol.292, issue.Suppl. 3, pp.1135-1179, 2012.
DOI : 10.1111/j.1365-2036.2012.05080.x

J. Lim, M. Mietus-snyder, A. Valente, J. Schwarz, and R. Lustig, The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome, Nature Reviews Gastroenterology & Hepatology, vol.139, issue.5, pp.251-64, 2010.
DOI : 10.1038/nrgastro.2010.41

M. Gregor, L. Yang, E. Fabbrini, B. Mohammed, J. Eagon et al., Endoplasmic Reticulum Stress Is Reduced in Tissues of Obese Subjects After Weight Loss, Diabetes, vol.58, issue.3, pp.693-700, 2009.
DOI : 10.2337/db08-1220

I. Bergheim, S. Weber, M. Vos, S. Kramer, V. Volynets et al., Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of endotoxin, Journal of Hepatology, vol.48, issue.6, pp.983-92, 2008.
DOI : 10.1016/j.jhep.2008.01.035

A. Spruss, G. Kanuri, S. Wagnerberger, S. Haub, S. Bischoff et al., Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice, Hepatology, vol.436, issue.4, pp.1094-104, 2009.
DOI : 10.1002/hep.23122

M. Song, D. Schuschke, Z. Zhou, T. Chen, W. Pierce et al., High fructose feeding induces copper deficiency in Sprague???Dawley rats: A novel mechanism for obesity related fatty liver, Journal of Hepatology, vol.56, issue.2, pp.433-473, 2012.
DOI : 10.1016/j.jhep.2011.05.030

C. Zhang, X. Chen, R. Zhu, Y. Zhang, T. Yu et al., Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice, Toxicology Letters, vol.212, issue.3, pp.229-269, 2012.
DOI : 10.1016/j.toxlet.2012.06.002

A. Modi, J. Feld, Y. Park, D. Kleiner, J. Everhart et al., Increased caffeine consumption is associated with reduced hepatic fibrosis, Hepatology, vol.49, issue.1, pp.201-210, 2010.
DOI : 10.1002/hep.23279

J. Molloy, C. Calcagno, C. Williams, F. Jones, D. Torres et al., Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis, Hepatology, vol.139, issue.2, pp.429-465, 2012.
DOI : 10.1002/hep.24731

P. Vitaglione, F. Morisco, G. Mazzone, D. Amoruso, M. Ribecco et al., Coffee reduces liver damage in a rat model of steatohepatitis: The underlying mechanisms and the role of polyphenols and melanoidins, Hepatology, vol.102, issue.5, pp.1652-61, 2010.
DOI : 10.1002/hep.23902

A. Birerdinc, M. Stepanova, L. Pawloski, and Z. Younossi, Caffeine is protective in patients with non-alcoholic fatty liver disease, Alimentary Pharmacology & Therapeutics, vol.27, issue.Suppl. 1, pp.76-82, 2012.
DOI : 10.1111/j.1365-2036.2011.04916.x

O. Gressner, B. Lahme, K. Rehbein, M. Siluschek, R. Weiskirchen et al., Pharmacological application of caffeine inhibits TGF-??-stimulated connective tissue growth factor expression in hepatocytes via PPAR?? and SMAD2/3-dependent pathways, Journal of Hepatology, vol.49, issue.5, pp.758-67, 2008.
DOI : 10.1016/j.jhep.2008.03.029

F. Salamone, L. Volti, G. Titta, L. Puzzo, L. Barbagallo et al., orange juice prevents fatty liver in mice, World Journal of Gastroenterology, vol.18, issue.29, pp.3862-3870, 2012.
DOI : 10.3748/wjg.v18.i29.3862

W. Kim and J. Egan, The Role of Incretins in Glucose Homeostasis and Diabetes Treatment, Pharmacological Reviews, vol.60, issue.4, pp.470-512, 2008.
DOI : 10.1124/pr.108.000604

X. Ding, N. Saxena, S. Lin, N. Gupta, and F. Anania, Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis inob/ob mice, Hepatology, vol.27, issue.1
DOI : 10.1002/hep.21006

S. Sharma, J. Mells, P. Fu, N. Saxena, and F. Anania, GLP-1 Analogs Reduce Hepatocyte Steatosis and Improve Survival by Enhancing the Unfolded Protein Response and Promoting Macroautophagy, PLoS ONE, vol.295, issue.9, p.25269, 2011.
DOI : 10.1371/journal.pone.0025269.s003

F. Marra, Ghrelin and fibrogenesis: Relief for a hungry liver, Journal of Hepatology, vol.55, issue.1, pp.221-224, 2011.
DOI : 10.1016/j.jhep.2011.01.027

Y. Li, H. J. Li, L. Chen, X. Peng, H. Cao et al., Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development, Endocrine, vol.171, issue.180, 2012.
DOI : 10.1007/s12020-012-9761-5

A. Neyrinck, P. Cani, E. Dewulf, D. Backer, F. Bindels et al., Critical role of Kupffer cells in the management of diet-induced diabetes and obesity, Biochemical and Biophysical Research Communications, vol.385, issue.3
DOI : 10.1016/j.bbrc.2009.05.070

W. Huang, A. Metlakunta, N. Dedousis, P. Zhang, I. Sipula et al., Depletion of Liver Kupffer Cells Prevents the Development of Diet-Induced Hepatic Steatosis and Insulin Resistance, Diabetes, vol.59, issue.2, pp.347-57, 2010.
DOI : 10.2337/db09-0016

N. Lanthier, O. Molendi-coste, P. Cani, N. Van-rooijen, Y. Horsmans et al., Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high-fat diet, The FASEB Journal, vol.25, issue.12, pp.4301-4312, 2011.
DOI : 10.1096/fj.11-189472

L. Dixon, M. Berk, S. Thapaliya, B. Papouchado, and A. Feldstein, Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis, Laboratory Investigation, vol.92, issue.5, pp.713-736, 2012.
DOI : 10.1002/hep.24341

K. Miura, L. Yang, N. Van-rooijen, H. Ohnishi, and E. Seki, Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2, AJP: Gastrointestinal and Liver Physiology, vol.302, issue.11, pp.1310-1331, 2012.
DOI : 10.1152/ajpgi.00365.2011

C. Rivera, P. Adegboyega, N. Van-rooijen, A. Tagalicud, M. Allman et al., Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis, Journal of Hepatology, vol.47, issue.4, pp.571-580, 2007.
DOI : 10.1016/j.jhep.2007.04.019

P. Murray and T. Wynn, Protective and pathogenic functions of macrophage subsets, Nature Reviews Immunology, vol.332, issue.11, pp.723-760, 2011.
DOI : 10.1038/nri3073

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, Journal of Clinical Investigation, vol.122, issue.3, pp.787-95, 2012.
DOI : 10.1172/JCI59643DS1

K. Kang, S. Reilly, V. Karabacak, M. Gangl, K. Fitzgerald et al., Adipocyte-Derived Th2 Cytokines and Myeloid PPAR?? Regulate Macrophage Polarization and Insulin Sensitivity, Cell Metabolism, vol.7, issue.6, pp.485-95, 2008.
DOI : 10.1016/j.cmet.2008.04.002

J. Fukushima, Y. Kamada, H. Matsumoto, Y. Yoshida, H. Ezaki et al., Adiponectin prevents progression of steatohepatitis in mice by regulating oxidative stress and Kupffer cell phenotype polarization, Hepatology Research, vol.21, issue.7, pp.724-762, 2009.
DOI : 10.1111/j.1872-034X.2009.00509.x

A. Louvet, F. Teixeira-clerc, M. Chobert, V. Deveaux, C. Pavoine et al., Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice, Hepatology, vol.5, issue.4, pp.1217-1243, 2011.
DOI : 10.1002/hep.24524

K. Miura, Y. Kodama, S. Inokuchi, B. Schnabl, T. Aoyama et al., Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice

R. Stienstra, F. Saudale, C. Duval, S. Keshtkar, J. Groener et al., Kupffer cells promote hepatic steatosis via interleukin-1??-dependent suppression of peroxisome proliferator-activated receptor ?? activity, Hepatology, vol.393, issue.2, pp.511-533, 2010.
DOI : 10.1002/hep.23337

J. Haukeland, J. Damas, Z. Konopski, E. Loberg, T. Haaland et al., Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2, Journal of Hepatology, vol.44, issue.6, pp.1167-74, 2006.
DOI : 10.1016/j.jhep.2006.02.011

C. Baeck, A. Wehr, K. Karlmark, F. Heymann, M. Vucur et al., Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury, Gut, vol.61, issue.3, pp.416-442, 2012.
DOI : 10.1136/gutjnl-2011-300304

S. Galastri, E. Zamara, S. Milani, E. Novo, A. Provenzano et al., Lack of CC chemokine ligand 2 differentially affects inflammation and fibrosis according to the genetic background in a murine model of steatohepatitis, Clinical Science, vol.50, issue.7, pp.459-71, 2012.
DOI : 10.1172/JCI41732

J. Duffield, S. Forbes, C. Constandinou, S. Clay, M. Partolina et al., Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair, Journal of Clinical Investigation, vol.115, issue.1, pp.56-65, 2005.
DOI : 10.1172/JCI200522675

T. Aoyama, S. Inokuchi, D. Brenner, and E. Seki, CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice, Hepatology, vol.97, issue.4
DOI : 10.1002/hep.23795

J. Pesce, T. Ramalingam, M. Mentink-kane, M. Wilson, E. Kasmi et al., Arginase-1???Expressing Macrophages Suppress Th2 Cytokine???Driven Inflammation and Fibrosis, PLoS Pathogens, vol.157, issue.4, p.1000371, 2009.
DOI : 10.1371/journal.ppat.1000371.s003

URL : http://doi.org/10.1371/journal.ppat.1000371

K. Karlmark, H. Zimmermann, C. Roderburg, N. Gassler, H. Wasmuth et al., The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes, Hepatology, vol.179, issue.5, pp.1769-82, 2010.
DOI : 10.1002/hep.23894

K. Wouters, P. Van-gorp, V. Bieghs, M. Gijbels, H. Duimel et al., Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis, Hepatology, vol.45, issue.2, pp.474-86, 2008.
DOI : 10.1002/hep.22363

V. Bieghs, P. Van-gorp, S. Walenbergh, M. Gijbels, F. Verheyen et al., Specific immunization strategies against oxidized low-density lipoprotein: A novel way to reduce nonalcoholic steatohepatitis in mice, Hepatology, vol.35, issue.Suppl., pp.894-903, 2012.
DOI : 10.1002/hep.25660

A. Leroux, G. Ferrere, V. Godie, F. Cailleux, M. Renoud et al., Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis, Journal of Hepatology, vol.57, issue.1, pp.141-150, 2012.
DOI : 10.1016/j.jhep.2012.02.028

URL : https://hal.archives-ouvertes.fr/hal-01001408

C. Erridge and N. Samani, Saturated Fatty Acids Do Not Directly Stimulate Toll-Like Receptor Signaling, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.11, pp.1944-1953, 2009.
DOI : 10.1161/ATVBAHA.109.194050

D. Pal, S. Dasgupta, R. Kundu, S. Maitra, G. Das et al., Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance, Nature Medicine, vol.193, issue.8, 2012.
DOI : 10.1126/stke.2002.129.pl6

T. Strowig, J. Henao-mejia, E. Elinav, and R. Flavell, Inflammasomes in health and disease, Nature, vol.107, issue.7381, pp.278-86, 2012.
DOI : 10.1038/nature10759

A. Mencin, J. Kluwe, and R. Schwabe, Toll-like receptors as targets in chronic liver diseases, Gut, vol.58, issue.5, pp.704-724, 2009.
DOI : 10.1136/gut.2008.156307

E. Seki and D. Brenner, Toll???like receptors and adaptor molecules in liver disease: Update, Hepatology, vol.25, issue.1, pp.322-357, 2008.
DOI : 10.1002/hep.22306

E. Vanni and E. Bugianesi, The gut-liver axis in nonalcoholic fatty liver disease: Another pathway to insulin resistance?, Hepatology, vol.22, issue.6, pp.1790-1792, 2009.
DOI : 10.1002/hep.23036

A. Wigg, I. Roberts-thomson, R. Dymock, P. Mccarthy, R. Grose et al., The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis, Gut, vol.48, issue.2, pp.206-217, 2001.
DOI : 10.1136/gut.48.2.206

L. Miele, V. Valenza, L. Torre, G. Montalto, M. Cammarota et al., Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease, Hepatology, vol.37, issue.6, pp.1877-87, 2009.
DOI : 10.1002/hep.22848

G. Szabo, A. Velayudham, L. Romics, . Jr, and P. Mandrekar, Modulation of Non-Alcoholic Steatohepatitis by Pattern Recognition Receptors in Mice: The Role of Toll-Like Receptors 2 and 4, Alcoholism: Clinical & Experimental Research, vol.281, issue.Supplement, pp.140-145, 2005.
DOI : 10.1073/pnas.94.6.2557

C. Rivera, L. Gaskin, M. Allman, J. Pang, K. Brady et al., Toll-like receptor-2 deficiency enhances non-alcoholic steatohepatitis, BMC Gastroenterology, vol.25, issue.1, p.52, 2010.
DOI : 10.1111/j.1440-1746.2009.06112.x

M. Vijay-kumar, J. Aitken, F. Carvalho, T. Cullender, S. Mwangi et al., Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5, Science, vol.328, issue.5975, pp.228-259
DOI : 10.1126/science.1179721

D. Tsukumo, M. Carvalho-filho, J. Carvalheira, P. Prada, S. Hirabara et al., Loss-of-Function Mutation in Toll-Like Receptor 4 Prevents Diet-Induced Obesity and Insulin Resistance, Diabetes, vol.56, issue.8, pp.1986-98, 2007.
DOI : 10.2337/db06-1595

D. Ye, F. Li, K. Lam, H. Li, W. Jia et al., Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice, Gut, vol.61, issue.7, pp.1058-67, 2012.
DOI : 10.1136/gutjnl-2011-300269

M. Saberi, N. Woods, C. De-luca, S. Schenk, J. Lu et al., Hematopoietic Cell-Specific Deletion of Toll-like Receptor 4 Ameliorates Hepatic and Adipose Tissue Insulin Resistance in High-Fat-Fed Mice, Cell Metabolism, vol.10, issue.5, pp.419-448, 2009.
DOI : 10.1016/j.cmet.2009.09.006

T. Csak, A. Velayudham, I. Hritz, J. Petrasek, I. Levin et al., Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice, AJP: Gastrointestinal and Liver Physiology, vol.300, issue.3, pp.433-474, 2011.
DOI : 10.1152/ajpgi.00163.2009

Z. Li, S. Yang, H. Lin, J. Huang, P. Watkins et al., Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease, Hepatology, vol.56, issue.2
DOI : 10.1053/jhep.2003.50048

P. Cani, J. Amar, M. Iglesias, M. Poggi, C. Knauf et al., Metabolic Endotoxemia Initiates Obesity and Insulin Resistance, Diabetes, vol.56, issue.7, pp.1761-72, 2007.
DOI : 10.2337/db06-1491

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.612.6162

H. Kudo, T. Takahara, Y. Yata, K. Kawai, W. Zhang et al., Lipopolysaccharide triggered TNF-??-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model, Journal of Hepatology, vol.51, issue.1, pp.168-75, 2009.
DOI : 10.1016/j.jhep.2009.02.032

S. Wagnerberger, A. Spruss, G. Kanuri, V. Volynets, C. Stahl et al., Toll-like receptors 1???9 are elevated in livers with fructose-induced hepatic steatosis, British Journal of Nutrition, vol.228, issue.12, pp.1727-1765, 2012.
DOI : 10.1038/35099560

E. Seki, D. Minicis, S. Osterreicher, C. Kluwe, J. Osawa et al., TLR4 enhances TGF-?? signaling and hepatic fibrosis, Nature Medicine, vol.41, issue.11, pp.1324-1356, 2007.
DOI : 10.1038/nm1663

P. Brun, I. Castagliuolo, M. Pinzani, G. Palu, and D. Martines, Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells, AJP: Gastrointestinal and Liver Physiology, vol.289, issue.3, pp.571-579, 2005.
DOI : 10.1152/ajpgi.00537.2004

B. Vandanmagsar, Y. Youm, A. Ravussin, J. Galgani, K. Stadler et al., The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance, Nature Medicine, vol.187, issue.2, pp.179-88, 2011.
DOI : 10.1038/nm.2279

R. Stienstra, J. Van-diepen, C. Tack, M. Zaki, F. Van-de-veerdonk et al., Inflammasome is a central player in the induction of obesity and insulin resistance, Proceedings of the National Academy of Sciences, vol.108, issue.37
DOI : 10.1073/pnas.1100255108

M. Lamkanfi, A. Sarkar, V. Walle, L. Vitari, A. Amer et al., Inflammasome-Dependent Release of the Alarmin HMGB1 in Endotoxemia, The Journal of Immunology, vol.185, issue.7, pp.4385-92, 2011.
DOI : 10.4049/jimmunol.1000803

L. Li, L. Chen, L. Hu, Y. Liu, H. Sun et al., Nuclear factor high-mobility group box1 mediating the activation of toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice, Hepatology, vol.139, issue.10, pp.1620-1650, 2011.
DOI : 10.1002/hep.24552

A. Watanabe, M. Sohail, D. Gomes, A. Hashmi, J. Nagata et al., Inflammasome-mediated regulation of hepatic stellate cells, AJP: Gastrointestinal and Liver Physiology, vol.296, issue.6, pp.1248-57, 2009.
DOI : 10.1152/ajpgi.90223.2008

L. Dixon, M. Berk, S. Thapaliya, B. Papouchado, and A. Feldstein, Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis, Laboratory Investigation, vol.92, issue.5, pp.713-736
DOI : 10.1002/hep.24341

N. Beraza, Y. Malato, V. Borght, S. Liedtke, C. Wasmuth et al., Pharmacological IKK2 inhibition blocks liver steatosis and initiation of non-alcoholic steatohepatitis, Gut, vol.57, issue.5, pp.655-63, 2008.
DOI : 10.1136/gut.2007.134288

D. Cai, M. Yuan, D. Frantz, P. Melendez, L. Hansen et al., Local and systemic insulin resistance resulting from hepatic activation of IKK-?? and NF-??B, Nature Medicine, vol.100, issue.2, pp.183-90, 2005.
DOI : 10.1172/JCI200111559

M. Arkan, A. Hevener, F. Greten, S. Maeda, Z. Li et al., IKK-?? links inflammation to obesity-induced insulin resistance, Nature Medicine, vol.58, issue.2, pp.191-199, 2005.
DOI : 10.1038/35070605

T. Luedde, N. Beraza, V. Kotsikoris, G. Van-loo, A. Nenci et al., Deletion of NEMO/IKK?? in Liver Parenchymal Cells Causes Steatohepatitis and Hepatocellular Carcinoma, Cancer Cell, vol.11, issue.2, pp.119-151, 2007.
DOI : 10.1016/j.ccr.2006.12.016

J. Schattenberg, R. Singh, Y. Wang, J. Lefkowitch, R. Rigoli et al., Jnk1 but not jnk2 promotes the development of steatohepatitis in mice, Hepatology, vol.10, issue.1, pp.163-72, 2006.
DOI : 10.1002/hep.20999

R. Singh, Y. Wang, Y. Xiang, K. Tanaka, W. Gaarde et al., Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance, Hepatology, vol.347, issue.1
DOI : 10.1002/hep.22578

Y. Kodama and D. Brenner, c-Jun N-terminal kinase signaling in the pathogenesis of nonalcoholic fatty liver disease: Multiple roles in multiple steps, Hepatology, vol.6, issue.1, pp.6-8, 2009.
DOI : 10.1002/hep.22710

R. Yang, D. Wilcox, D. Haasch, P. Jung, P. Nguyen et al., Liver-specific Knockdown of JNK1 Up-regulates Proliferator-activated Receptor ?? Coactivator 1beta and Increases Plasma Triglyceride despite Reduced Glucose and Insulin Levels in Diet-induced Obese Mice, Journal of Biological Chemistry, vol.282, issue.31, pp.22765-74, 2007.
DOI : 10.1074/jbc.M700790200

Y. Kodama, T. Kisseleva, K. Iwaisako, K. Miura, and K. Taura, c-Jun N-terminal Kinase-1 From Hematopoietic Cells Mediates Progression From Hepatic Steatosis to Steatohepatitis and Fibrosis in Mice, Gastroenterology, vol.137, issue.4, pp.1467-1477, 2009.
DOI : 10.1053/j.gastro.2009.06.045

G. Sabio, J. Cavanagh-kyros, H. Ko, D. Jung, S. Gray et al., Prevention of Steatosis by Hepatic JNK1, Cell Metabolism, vol.10, issue.6, pp.491-499, 2009.
DOI : 10.1016/j.cmet.2009.09.007

A. Bigorgne, L. Bouchet-delbos, S. Naveau, I. Dagher, S. Prevot et al., Obesity-Induced Lymphocyte Hyperresponsiveness to Chemokines: A New Mechanism of Fatty Liver Inflammation in Obese Mice, Gastroenterology, vol.134, issue.5, pp.1459-69, 2008.
DOI : 10.1053/j.gastro.2008.02.055

X. Ma, J. Hua, A. Mohamood, A. Hamad, R. Ravi et al., A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury, Hepatology, vol.35, issue.5, pp.1519-1548, 2007.
DOI : 10.1002/hep.21823

Y. Tang, Z. Bian, L. Zhao, Y. Liu, S. Liang et al., Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease, Clinical & Experimental Immunology, vol.283, issue.1, pp.281-90, 2011.
DOI : 10.1111/j.1365-2249.2011.04471.x

A. Bertola, T. Ciucci, D. Rousseau, V. Bourlier, C. Duffaut et al., Identification of Adipose Tissue Dendritic Cells Correlated With Obesity-Associated Insulin-Resistance and Inducing Th17 Responses in Mice and Patients, Diabetes, vol.61, issue.9, pp.2238-2285, 2012.
DOI : 10.2337/db11-1274

URL : https://hal.archives-ouvertes.fr/inserm-00726176

E. Elinav, O. Pappo, M. Sklair-levy, M. Margalit, O. Shibolet et al., Adoptive transfer of regulatory NKT lymphocytes ameliorates non-alcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping, The Journal of Pathology, vol.38, issue.1, pp.121-129, 2006.
DOI : 10.1002/path.1950

M. Kremer, E. Thomas, R. Milton, A. Perry, N. Van-rooijen et al., Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis, Hepatology, vol.21, issue.1
DOI : 10.1002/hep.23292

K. Tajiri, Y. Shimizu, K. Tsuneyama, and T. Sugiyama, Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease, European Journal of Gastroenterology & Hepatology, vol.21, issue.6
DOI : 10.1097/MEG.0b013e32831bc3d6

W. Syn, Y. Oo, T. Pereira, G. Karaca, Y. Jung et al., Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease, Hepatology, vol.153, issue.6, pp.1998-2007, 2010.
DOI : 10.1002/hep.23599

W. Syn, K. Agboola, M. Swiderska, G. Michelotti, E. Liaskou et al., NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease, Gut, vol.61, issue.9, pp.1323-1332, 2012.
DOI : 10.1136/gutjnl-2011-301857

J. Liu, L. Zhou, K. Xiong, G. Godlewski, B. Mukhopadhyay et al., Hepatic Cannabinoid Receptor-1 Mediates Diet-Induced Insulin Resistance via Inhibition of Insulin Signaling and Clearance in Mice, Gastroenterology, vol.142, issue.5, pp.1218-1228, 2012.
DOI : 10.1053/j.gastro.2012.01.032

N. Mendez-sanchez, D. Zamora-valdes, R. Pichardo-bahena, B. Barredo-prieto, G. Ponciano-rodriguez et al., Endocannabinoid receptor CB2 in nonalcoholic fatty liver disease, Liver International, vol.135, issue.2, pp.215-224, 2007.
DOI : 10.1042/BJ20041163

A. Mallat, F. Teixeira-clerc, V. Deveaux, S. Manin, and S. Lotersztajn, The endocannabinoid system as a key mediator during liver diseases: new insights and therapeutic openings, British Journal of Pharmacology, vol.112, issue.7, pp.1432-1472, 2011.
DOI : 10.1111/j.1476-5381.2011.01397.x

D. Osei-hyiaman, J. Liu, L. Zhou, G. Godlewski, J. Harvey-white et al., Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice, Journal of Clinical Investigation, vol.118, issue.9, pp.3160-3169, 2008.
DOI : 10.1172/JCI34827

M. Gary-bobo, G. Elachouri, J. Gallas, P. Janiak, P. Marini et al., Rimonabant reduces obesity-associated hepatic steatosis and features of metabolic syndrome in obese Zucker fa/fa rats, Hepatology, vol.330, issue.1, pp.122-131, 2007.
DOI : 10.1002/hep.21641

T. Jourdan, L. Djaouti, L. Demizieux, J. Gresti, B. Verges et al., CB1 Antagonism Exerts Specific Molecular Effects on Visceral and Subcutaneous Fat and Reverses Liver Steatosis in Diet-Induced Obese Mice, Diabetes, vol.59, issue.4, pp.926-960, 2010.
DOI : 10.2337/db09-1482

URL : https://hal.archives-ouvertes.fr/inserm-01344504

C. Hezode, E. Zafrani, F. Roudot-thoraval, C. Costentin, A. Hessami et al., Daily Cannabis Use: A Novel Risk Factor of Steatosis Severity in Patients With Chronic Hepatitis C, Gastroenterology, vol.134, issue.2, pp.432-441, 2008.
DOI : 10.1053/j.gastro.2007.11.039

D. Van-der-poorten, M. Shahidi, E. Tay, J. Sesha, K. Tran et al., Hepatitis C Virus Induces the Cannabinoid Receptor 1, PLoS ONE, vol.48, issue.9, 2010.
DOI : 10.1371/journal.pone.0012841.s001

F. Dol-gleizes, R. Paumelle, V. Visentin, A. Mares, P. Desitter et al., Rimonabant, a Selective Cannabinoid CB1 Receptor Antagonist, Inhibits Atherosclerosis in LDL Receptor-Deficient Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.1, pp.12-20, 2009.
DOI : 10.1161/ATVBAHA.108.168757

A. Miranville, A. Herling, G. Biemer-daub, and M. Voss, Reversal of Inflammation-Induced Impairment of Glucose Uptake in Adipocytes by Direct Effect of CB1 Antagonism on Adipose Tissue Macrophages, Obesity, vol.92, issue.12, pp.2247-54, 2010.
DOI : 10.1038/oby.2010.81

D. Chanda, D. Kim, T. Li, Y. Kim, S. Koo et al., Cannabinoid Receptor Type 1 (CB1R) Signaling Regulates Hepatic Gluconeogenesis via Induction of Endoplasmic Reticulum-bound Transcription Factor cAMP-responsive Element-binding Protein H (CREBH) in Primary Hepatocytes, Journal of Biological Chemistry, vol.286, issue.32, pp.27971-27980, 2011.
DOI : 10.1074/jbc.M111.224352

B. Mukhopadhyay, R. Cinar, S. Yin, J. Liu, J. Tam et al., Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB1) receptors in the regenerating liver, Proceedings of the National Academy of Sciences, vol.108, issue.15, pp.6323-6331, 2011.
DOI : 10.1073/pnas.1017689108

J. Tam, R. Cinar, J. Liu, G. Godlewski, D. Wesley et al., Peripheral Cannabinoid-1 Receptor Inverse Agonism Reduces Obesity by Reversing Leptin Resistance, Cell Metabolism, vol.16, issue.2, pp.167-79, 2012.
DOI : 10.1016/j.cmet.2012.07.002

URL : http://doi.org/10.1016/j.cmet.2012.07.002

V. Gaal, L. Scheen, A. Rissanen, A. Rossner, S. Hanotin et al., Long-term effect of CB1 blockade with rimonabant on cardiometabolic risk factors: two year results from the RIO-Europe Study ???, European Heart Journal, vol.29, issue.14, pp.1761-71, 2008.
DOI : 10.1093/eurheartj/ehn076

J. Despres, R. Ross, G. Boka, N. Almeras, and I. Lemieux, Effect of Rimonabant on the High-Triglyceride/ Low-HDL-Cholesterol Dyslipidemia, Intraabdominal Adiposity, and Liver Fat: The ADAGIO-Lipids Trial, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.3, pp.416-439, 2009.
DOI : 10.1161/ATVBAHA.108.176362

F. Teixeira-clerc, B. Julien, P. Grenard, J. Tran-van-nhieu, V. Deveaux et al., CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis, Nature Medicine, vol.30, issue.6, pp.671-676, 2006.
DOI : 10.1038/nm1421

C. Hezode, F. Roudot-thoraval, S. Nguyen, P. Grenard, B. Julien et al., 68 Daily cannabis smoking as a risk factor for fibrosis progression in chronic hepatitis C, Journal of Hepatology, vol.40
DOI : 10.1016/S0168-8278(04)90068-2

N. Cluny, V. Vemuri, A. Chambers, C. Limebeer, H. Bedard et al., A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents, British Journal of Pharmacology, vol.29, issue.1, pp.629-671, 2010.
DOI : 10.1111/j.1476-5381.2010.00908.x

J. Tam, V. Vemuri, J. Liu, S. Batkai, B. Mukhopadhyay et al., Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity, Journal of Clinical Investigation, vol.120, issue.8, pp.2953-66, 2010.
DOI : 10.1172/JCI42551DS1

V. Deveaux, T. Cadoudal, Y. Ichigotani, F. Teixeira-clerc, A. Louvet et al., Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis, PLoS ONE, vol.4, issue.6, p.5844, 2009.
DOI : 10.1371/journal.pone.0005844.t001

URL : https://hal.archives-ouvertes.fr/inserm-00410154

F. Teixeira-clerc, M. Belot, S. Manin, V. Deveaux, T. Cadoudal et al., Beneficial paracrine effects of cannabinoid receptor 2 on liver injury and regeneration, Hepatology, vol.156, issue.3
DOI : 10.1002/hep.23779

URL : https://hal.archives-ouvertes.fr/inserm-00519450

B. Julien, P. Grenard, F. Teixeira-clerc, V. Nhieu, J. Li et al., Antifibrogenic role of the cannabinoid receptor CB2 in the liver, Gastroenterology, vol.128, issue.3, pp.742-55, 2005.
DOI : 10.1053/j.gastro.2004.12.050

F. Lafdil, A. Guillot, A. Bizy, K. Zoltani, V. Deveaux et al., 377 INHIBITION OF THE PRO-FIBROGENIC TH17 IMMUNE RESPONSE BY CANNABINOID RECEPTOR 2 AGONIST DECREASES LIVER FIBROSIS, Journal of Hepatology, vol.56, p.152, 2012.
DOI : 10.1016/S0168-8278(12)60390-0

M. Guicciardi and G. Gores, Apoptosis as a Mechanism for Liver Disease Progression, Seminars in Liver Disease, vol.30, issue.04, pp.402-412, 2010.
DOI : 10.1055/s-0030-1267540

J. Jiang, K. Mikami, V. Shah, and N. Torok, Leptin induces phagocytosis of apoptotic bodies by hepatic stellate cells via a Rho guanosine triphosphatase-dependent mechanism, Hepatology, vol.279, issue.Suppl, pp.1497-505, 2008.
DOI : 10.1002/hep.22515

D. Tiple, G. Fabbrini, C. Colosimo, D. Ottaviani, F. Camerota et al., Camptocormia in Parkinson disease: an epidemiological and clinical study, Journal of Neurology, Neurosurgery & Psychiatry, vol.80, issue.2, pp.145-153, 2009.
DOI : 10.1136/jnnp.2008.150011

C. Colosimo and G. Fabbrini, Investigational drugs, Handb Clin Neurol, vol.84, pp.137-50, 2007.
DOI : 10.1016/S0072-9752(07)84037-1

M. Sellitto, R. Genesio, A. Conti, F. Fabbrini, L. Nitsch et al., Short 9q interstitial deletion in a neonate with lethal non-immune hydrops, American Journal of Medical Genetics Part A, vol.19, issue.19, pp.2566-2575, 2008.
DOI : 10.1002/ajmg.a.32350

G. Defazio, A. Berardelli, G. Fabbrini, D. Martino, E. Fincati et al., Pain as a Nonmotor Symptom of Parkinson Disease, Archives of Neurology, vol.65, issue.9, pp.1191-1195, 2008.
DOI : 10.1001/archneurol.2008.2

A. Pini, J. Brunetti, C. Falciani, M. Fabbrini, and L. Bracci, Solubility Improvement of an Anthrax Toxin Peptide Inhibitor by Rational Aminoacid Randomization, Protein & Peptide Letters, vol.15, issue.6, pp.562-568, 2008.
DOI : 10.2174/092986608784966958

G. Strappaghetti, L. Mastrini, A. Lucacchini, G. Giannaccini, L. Betti et al., Synthesis and biological affinity of new imidazo- and indol-arylpiperazine derivatives: Further validation of a pharmacophore model for ??1-adrenoceptor antagonists, Bioorganic & Medicinal Chemistry Letters, vol.18, issue.18, pp.5140-5145, 2008.
DOI : 10.1016/j.bmcl.2008.07.084

M. Pasquini, G. Fabbrini, I. Berardelli, V. Bonifati, M. Biondi et al., Psychopathological features of obsessive???compulsive disorder in an Italian family with Gilles de la Tourette syndrome not linked to the SLITRK1 gene, Psychiatry Research, vol.161, issue.1, pp.109-120, 2008.
DOI : 10.1016/j.psychres.2008.02.012

D. Tiple, S. Strano, C. Colosimo, G. Fabbrini, G. Calcagnini et al., Autonomic cardiovascular function and baroreflex sensitivity in patients with cervical dystonia receiving treatment with botulinum toxin type A, Journal of Neurology, vol.44, issue.6, pp.843-850, 2008.
DOI : 10.1007/s00415-008-0753-6

K. Korenblat, E. Fabbrini, B. Mohammed, and S. Klein, Liver, Muscle, and Adipose Tissue Insulin Action Is Directly Related to Intrahepatic Triglyceride Content in Obese Subjects, Gastroenterology, vol.134, issue.5, pp.1369-75, 2008.
DOI : 10.1053/j.gastro.2008.01.075

C. Day and O. James, Steatohepatitis: A tale of two ???hits????, Gastroenterology, vol.114, issue.4, pp.842-845, 1998.
DOI : 10.1016/S0016-5085(98)70599-2

L. Videla, R. R. Orellana, M. Fernandez, V. Tapia, G. Quinones et al., Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients, Clinical Science, vol.106, issue.3
DOI : 10.1042/CS20030285

A. Sanyal, N. Chalasani, K. Kowdley, A. Mccullough, A. Diehl et al., Pioglitazone, Vitamin E, or Placebo for Nonalcoholic Steatohepatitis, New England Journal of Medicine, vol.362, issue.18, pp.1675-85, 2010.
DOI : 10.1056/NEJMoa0907929

A. Rolo, J. Teodoro, and C. Palmeira, Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis, Free Radical Biology and Medicine, vol.52, issue.1, pp.59-69, 2012.
DOI : 10.1016/j.freeradbiomed.2011.10.003

G. Robertson, I. Leclercq, and G. Farrell, Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress, Am J Physiol Gastrointest Liver Physiol, vol.281, pp.1135-1144, 2001.

I. Leclercq, G. Farrell, J. Field, D. Bell, F. Gonzalez et al., CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis, Journal of Clinical Investigation, vol.105, issue.8, pp.1067-75, 2000.
DOI : 10.1172/JCI8814

R. Gambino, G. Musso, and M. Cassader, Redox Balance in the Pathogenesis of Nonalcoholic Fatty Liver Disease: Mechanisms and Therapeutic Opportunities, Antioxidants & Redox Signaling, vol.15, issue.5, pp.1325-65, 2011.
DOI : 10.1089/ars.2009.3058

A. Sanyal, C. Campbell-sargent, F. Mirshahi, W. Rizzo, M. Contos et al., Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities, Gastroenterology, vol.120, issue.5, pp.1183-92, 2001.
DOI : 10.1053/gast.2001.23256

P. Dongiovanni, A. Fracanzani, S. Fargion, and L. Valenti, Iron in fatty liver and in the metabolic syndrome: A promising therapeutic target, Journal of Hepatology, vol.55, issue.4, pp.920-952, 2011.
DOI : 10.1016/j.jhep.2011.05.008

M. Parola and G. Robino, Oxidative stress-related molecules and liver fibrosis, Journal of Hepatology, vol.35, issue.2, pp.297-306, 2001.
DOI : 10.1016/S0168-8278(01)00142-8

K. Otogawa, T. Ogawa, R. Shiga, K. Nakatani, K. Ikeda et al., Attenuation of acute and chronic liver injury in rats by iron-deficient diet, AJP: Regulatory, Integrative and Comparative Physiology, vol.294, issue.2, pp.311-331, 2008.
DOI : 10.1152/ajpregu.00735.2007

S. Singh, From Exotic Spice to Modern Drug?, Cell, vol.130, issue.5, pp.765-773, 2007.
DOI : 10.1016/j.cell.2007.08.024

I. Leclercq, G. Farrell, C. Sempoux, D. Pena, A. Horsmans et al., Curcumin inhibits NF-??B activation and reduces the severity of experimental steatohepatitis in mice, Journal of Hepatology, vol.41, issue.6, pp.926-960, 2004.
DOI : 10.1016/j.jhep.2004.08.010

F. Vizzutti, A. Provenzano, S. Galastri, S. Milani, W. Delogu et al., Curcumin limits the fibrogenic evolution of experimental steatohepatitis, Laboratory Investigation, vol.76, issue.1, pp.104-119, 2010.
DOI : 10.1016/j.cell.2007.08.024

Y. Rivera-espinoza and P. Muriel, Pharmacological actions of curcumin in liver diseases or damage, Liver International, vol.29, issue.10, pp.1457-66, 2009.
DOI : 10.1111/j.1478-3231.2009.02086.x

Y. Tang, S. Zheng, and A. Chen, Curcumin Eliminates Leptin???s Effects on Hepatic Stellate Cell Activation via Interrupting Leptin Signaling, Endocrinology, vol.150, issue.7, pp.3011-3031, 2009.
DOI : 10.1210/en.2008-1601

C. Loguercio, P. Andreone, C. Brisc, M. Brisc, E. Bugianesi et al., Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: A randomized controlled trial, Free Radical Biology and Medicine, vol.52, issue.9, pp.1658-65, 2012.
DOI : 10.1016/j.freeradbiomed.2012.02.008