A. Uccelli, V. Moretta, and . Pistoia, Mesenchymal stem cells in health and disease, Nature Reviews Immunology, vol.2, issue.9, pp.726-762, 2008.
DOI : 10.1038/nri2395

X. Cai, . Gao, C. Pileggi, and . Ricordi, Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial, JAMA, vol.307, pp.1169-77, 2012.

. Chandran, Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study, Lancet Neurol, vol.11, pp.150-156, 2012.

O. Ringden, Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study, Lancet, vol.371, pp.1579-86, 2008.

A. Deans, . Keating, E. Prockop, and . Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, pp.315-322, 2006.

L. Sensebe, K. Bourin, and . Tarte, Good Manufacturing Practices Production of Mesenchymal Stem/Stromal Cells, Human Gene Therapy, vol.22, issue.1, pp.19-26, 2011.
DOI : 10.1089/hum.2010.197

URL : https://hal.archives-ouvertes.fr/hal-00743942

M. Hedrick and J. Fraser, Differential expression of stem cell mobilizationassociated molecules on multi-lineage cells from adipose tissue and bone marrow, 2003.

M. Strioga, . Viswanathan, . Darinskas, J. Slaby, and . Michalek, Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells, Stem Cells and Development, vol.21, issue.14, 2012.
DOI : 10.1089/scd.2011.0722

P. Kyurkchiev, . Tivchev, D. Altunkova, and . Kyurkchiev, Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells, Immunol Lett, vol.126, issue.12, pp.37-42, 2009.

. Cousin, Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials, Exp Cell Res, vol.314, pp.1575-84, 2008.

L. Gorin and . Sensebe, Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation, Blood, vol.115, pp.1549-53, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00744192

. Tyndall, Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells, Arthritis & Rheumatism, vol.354, issue.12, pp.3815-3840, 2010.
DOI : 10.1002/art.27736

Y. Kato, Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF, Biochem Biophys Res Commun, vol.288, pp.413-422, 2001.

M. Yang, . Vemuri, V. Ms-rao, and . Tanavde, PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages, Blood, vol.112, pp.295-307, 2008.

L. Blanc, K. , and D. Mougiakakos, Multipotent mesenchymal stromal cells and the innate immune system, Nature Reviews Immunology, vol.107, issue.5, pp.383-96, 2012.
DOI : 10.1038/nri3209

. Annunziato, Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells, Stem Cells, vol.24, pp.386-98, 2006.

M. Krampera, Mesenchymal stromal cell ???licensing???: a multistep process, Leukemia, vol.65, issue.9, pp.1408-1422, 2011.
DOI : 10.1038/leu.2011.108

. Pennesi, Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway, Eur J Immunol, vol.35, pp.1482-90, 2005.

M. Krampera, . Maggi, F. Romagnani, and . Annunziato, Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling, Stem Cells, vol.26, pp.279-89, 2008.

N. Tiberghien, E. Rouas-freiss, F. Carosella, and . Deschaseaux, Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells, Stem Cells, vol.26, pp.212-234, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00483522

. Moretta, Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2, Blood, vol.111, pp.1327-1360, 2008.

M. Cuturi, A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells, Blood, vol.110, pp.3691-3695, 2007.

P. Delafontaine and D. Prockop, Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the antiinflammatory protein TSG-6, Cell Stem Cell, vol.5, pp.54-63, 2009.

W. Ji, . Zhang, Y. Ab-rabson, and . Shi, Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression, Stem Cells, vol.27, pp.1954-62, 2009.

P. Bourin, J. Peyrafitte, and S. Fleury-cappellesso, A First Approach for the Production of Human Adipose Tissue-Derived Stromal Cells for Therapeutic Use, 2011.
DOI : 10.1007/978-1-61737-960-4_24

V. Mailander, . Lotfi, . Ignatius, . Sensebe, . Bourin et al., Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components, Cytotherapy, vol.14, pp.540-54, 2012.

I. Schrezenmeier, . Copland, R. Yuan, . Romieu-mourez, J. Ek-waller et al., GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC, 2012.

S. Wang and . Shi, Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha, Nat Med, vol.17, pp.1594-601, 2011.

K. Tulzo and . Tarte, Enhanced indoleamine 2,3-dioxygenase activity in patients with severe sepsis and septic shock, J Infect Dis, vol.201, pp.956-66, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00744207

C. Bescher, . Monvoisin, . Dulong, . Lamy, K. Fest et al., Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase, Cancer Res, vol.69, pp.3228-3265, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00869384

F. Risso, . Gualandi, . Mancardi, . Pistoia, and . Uccelli, Human mesenchymal stem cells modulate B-cell functions, Blood, vol.107, pp.367-72, 2006.

. Galipeau, Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties, Blood, vol.114, pp.2632-2640, 2009.

M. Francois, R. Romieu-mourez, J. Li, and . Galipeau, Human MSC Suppression Correlates With Cytokine Induction of Indoleamine 2,3-Dioxygenase and Bystander M2 Macrophage Differentiation, Molecular Therapy, vol.20, issue.1, pp.187-95, 2012.
DOI : 10.1038/mt.2011.189

R. Stocker, Post-translational regulation of human indoleamine 2,3- dioxygenase activity by nitric oxide, J Biol Chem, vol.282, pp.23778-87, 2007.

L. Toungouz and . Lagneaux, Characterization and functionality of the CD200- Page 26 of 41, 2012.

H. Abdelrazik, . Spaggiari, L. Chiossone, and . Moretta, Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function, European Journal of Immunology, vol.294, issue.11, pp.3281-90, 2011.
DOI : 10.1002/eji.201141542

P. Cheng, Y. Gao, Y. Liu, and . Xue, Platelet-derived growth factor BB promotes the migration of bone marrow-derived mesenchymal stem cells towards C6 glioma and up-regulates the expression of intracellular adhesion molecule-1, Neuroscience Letters, vol.451, issue.1, 2009.
DOI : 10.1016/j.neulet.2008.12.044

B. Krampera and . Bonetti, Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis, Stem Cells, vol.27, pp.2624-2659, 2009.

L. Sensebe, . Layrolle, P. Haupl, and . Charbord, Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells, Blood, vol.111, pp.2631-2636, 2008.

G. Falk and . Rogler, Inducible CD40 expression mediates NFkappaB activation and cytokine secretion in human colonic fibroblasts, Gut, vol.52, pp.1448-56, 2003.

G. Straface, . Sgambato, C. Malesci, S. Fiocchi, and . Rutella, Critical role of the CD40 CD40-ligand pathway in regulating mucosal inflammation-driven angiogenesis in inflammatory bowel disease, Gut, vol.56, pp.1248-56, 2007.

C. Willecke, . Munkel, . Schonbeck, C. Libby, . Bode et al., CD40L induces inflammation and adipogenesis in adipose cells--a potential link between metabolic and cardiovascular disease, Thromb Haemost, vol.103, pp.788-96, 2010.

K. Edinger, . Peter, . Kreutz, . Andreesen, E. Oefner et al., Tryptophan catabolism is associated with acute GVHD after human allogeneic stem cell transplantation and indicates activation of indoleamine 2,3-dioxygenase, Blood, vol.118, pp.6971-6975, 2011.

S. Mehrotra, . Setty, . Smith, and . Bartholomew, IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease, 2008.

K. Ringden and . Le-blanc, Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation, Stem Cells, vol.30, pp.1575-1583, 2012.

M. Gobbi and . Zocchi, Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors, J Immunol, vol.175, pp.6352-60, 2005.

E. Lombardo, J. Tarazona, and . Casado, Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killermediated lysis, Stem Cells Dev, vol.21, pp.1333-1376, 2012.

N. Hosui, . Hiramatsu, . Kanto, T. Hayashi, and . Takehara, Fibroblast growth factor-2 enhances NK sensitivity of hepatocellular carcinoma cells, Int J Cancer, vol.130, pp.356-64, 2012.

C. Moretta and . Bottino, Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction, Blood, vol.107, pp.2030-2036, 2006.

A. Bmmsc-pl and B. , Figure 4. Immune properties of

. Experiments and . Ns, not significant; ** p<0.01. (B) Representative example of IDO blockade in coculture of activated T cells with one ADSC-PL and one BMMSC-FCS