An a contrario approach for the detection of activated brain areas in fMRI
Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Christian Barillot

To cite this version:

HAL Id: inserm-00784860
http://www.hal.inserm.fr/inserm-00784860
Submitted on 10 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Results: 12 healthy subjects were involved in this study and underwent 3 BOLD fMRI sessions of a block motor paradigm [3]. In order to compare the performances of the standard massively univariate GLM with the proposed *a contrario* approach, we used Receiver-Operating-Characteristics (ROC) curves and estimated the area under the curve for false positive rates ranging from 0 to 0.1 (as only a small percentage of the voxels are expected to be active). Validation of fMRI analysis is still challenging due to the lack of ground truth. We focused on a well-studied right-hand motor paradigm in which the main activations are expected in the precentral and postcentral sulci (Left and Right) and in the Supplementary Motor Area (SMA) (Left and Right) [3]. We studied two different “ground truths”. First, as suggested in [3], we targeted the activation of the grey matter in the right hand motor area precentral and postcentral sulci (Left and Right) and in the Supplementary Motor Area (SMA) (Left and Right) [3]. We studied two different “ground truths”. First, as suggested in [3], we targeted the activation of the grey matter in the right hand motor area as manually delineated by an expert neuro-radiologist, while the surrounding white matter was expected to be inactive. Second, we also tested a global criterion, in which activation in both the hand motor area and part of the SMA (as defined by the AAL atlas) were activation targets, while whole-brain white matter (>70%) was expected to be inactive. We compared the standard massively univariate GLM (no smoothing and smoothing with a gaussian FWHM kernel of 6mm³) with the *a contrario* approach.

Fig. 1 displays the expected active and inactive regions for a representative subject along with the associated ROC curves averaged over sessions and subjects. Overall the *a contrario* approach outperformed both the unsmoothed and smoothed massively univariate GLM in term of area under the curve. Two sample t-tests were performed in order to detect significant improvement at the group level (false discovery rate q < 0.05). The *a contrario* approach with local ground truth was significantly better than the smoothed GLM for all sessions (p = 0.018, p = 0.038, p = 0.016) and than the unsmoothed GLM for 2 sessions out of 3 (p =0.003, p = 0.005). Moreover, using the global ground truth, the *a contrario* approach performed significantly better than the smoothed GLM for all sessions (p = 0.003, p = 0.009, p = 0.006) and than the unsmoothed GLM for 2 sessions out of 3 (p = 0.002, p = 0.002)

Discussion: We propose a new *a contrario* approach to detect fMRI activations. This method displayed better spatially defined activations with a more interesting trade-off between sensitivity and specificity by comparison to the standard massively univariate GLM.