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Abstract

Accurate stage determination is crucial in the choice of treatment for patients suffering from sleeping sickness, also

known as human African trypanosomiasis (HAT). Current staging methods, based on the counting of white blood

cells (WBC) and the detection of parasites in the cerebrospinal fluid (CSF) have limited accuracy. We hypothesized

that immune mediators reliable for staging T. b. gambiense HAT could also be used to stratify T. b. rhodesiense

patients, the less common form of HAT.

A population comprising 85 T. b. rhodesiense patients, 14 stage 1 (S1) and 71 stage 2 (S2) enrolled in Malawi and

Uganda, was investigated. The CSF levels of IgM, MMP-9, CXCL13, CXCL10, ICAM-1, VCAM-1, neopterin and B2MG

were measured and their staging performances evaluated using receiver operating characteristic (ROC) analyses.

IgM, MMP-9 and CXCL13 were the most accurate markers for stage determination (partial AUC 88%, 86% and 85%,

respectively). The combination in panels of three molecules comprising CXCL13-CXCL10-MMP-9 or

CXCL13-CXCL10-IgM significantly increased their staging ability to partial AUC 94% (p value < 0.01).

The present study highlighted new potential markers for stage determination of T. b. rhodesiense patients. Further

investigations are needed to better evaluate these molecules, alone or in panels, as alternatives to WBC to make

reliable choice of treatment.
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Background
Human African trypanosomiasis (HAT), commonly

known as sleeping sickness, is a neglected tropical dis-

ease caused by the Trypanosoma brucei parasite and

transmitted to humans through the bite of the tsetse fly

[1]. Two morphologically identical subspecies of para-

sites are responsible for the disease: Trypanosoma brucei

gambiense and T. b. rhodesiense [2]. In both cases, the

disease progresses from a haemolymphatic first stage

(S1), to a meningo-encephalitic second stage (S2). The

latter reflects invasion of the central nervous system

(CNS) by the parasites across the blood–brain barrier

(BBB) with severe neurological complications, which can

ultimately lead to coma and death, when untreated [3].

The two forms of HAT differ in their clinical presenta-

tions and geographic distribution. The gambiense form

is widespread in Central and Western Africa and is com-

monly considered to be a chronic infection, which slowly

progresses from the first to the second stage. The rhode-

siense form of sleeping sickness, that affects communi-

ties in Eastern Africa, is a more aggressive illness, which

rapidly progresses to the meningo-encephalitic stage [3]

and accounts for less than 5% of all HAT cases [4]. Con-

trary to T. b. gambiense, for which a relatively safe drug

combination has recently been introduced for treatment

of S2 patients [4-6], treatment of S2 T. b. rhodesiense

patients still relies on melarsoprol [7-9]. Melarsoprol has

been reported to cause reactive encephalopathies in 8%

of T. b. rhodesiense treated patients, which are fatal in

57% of them [8]. As a drug to safely treat both stage 1
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and stage 2 patients is yet to be identified, and as S2

treatment is associated with severe side effects and tox-

icity [8], stage determination remains a key step in the

management of patients suffering from T. b. rhodesiense

HAT.

Staging is based on the examination of the cerebro-

spinal fluid (CSF) by microscopy. According to WHO,

patients having ≤ 5 white blood cells (WBC) per micro-

liter of CSF and absence of parasites are considered to

be in the first stage of the disease, while patients having

more than 5 WBC/μL and/or presence of parasites in

the CSF are considered as S2 [10]. These methods suffer

from limited specificity and reproducibility of the count-

ing of WBC and lack of sensitivity in finding of parasites

in CSF [11,12] (Dieudonné Mumba Ngoyi, personal

communication).

The discovery of surrogate markers to complement or

replace the counting of WBC in the staging of HAT is

highly desired [11,13,14]. Many studies have focused on

the staging in T. b. gambiense HAT [13,15-20], while less

attention has been paid to T. b. rhodesiense, with a pau-

city of data on staging markers [13,21,22]. Some pro-

and anti-inflammatory factors have been shown to be

associated with the late stage of T. b. rhodesiense sleep-

ing sickness, including IL-10, IL-6, CXCL10 and neop-

terin [13,21,22].

The aim of the present study was to investigate eight

immune-related factors, shown to be powerful markers

for stratification of T. b. gambiense HAT patients [13,15-

20,23], as staging markers for T. b. rhodesiense sleeping

sickness.

Methods
Patients

Eighty five patients (14 stage 1 and 71 stage 2) with evi-

dence of parasites in blood, lymph or CSF were investi-

gated in the present study (Table 1). Patients were

enrolled by active or passive case finding in Malawi

(NEUROTRYP study [13]) and Uganda (FINDTRYP

study), in regions endemic for T. b. rhodesiense HAT.

The studies were approved by the Ministry of Health

and Population, Lilongwe, Malawi and by the Uganda

National Council for Science and Technology (UNCST).

All patients signed a written informed consent before

inclusion into the study. Children (< 18 years old) or

patients with altered mental status were only included in

the studies after written consent of a parent or a guard-

ian. All enrolled patients had the possibility to withdraw

at any moment. Details on sample collection, inclusion

and exclusion criteria of the two cohorts are reported in

Additional file 1: Table 1.

CSF samples were collected by lumbar puncture and the

number of WBC counted. The presence of parasites was

determined using either the modified single centrifugation

(Malawi) [24] or double centrifugation (Uganda) [25]

methods. CSF samples were stored in liquid nitrogen at

the site of collection, followed by storage at −80°C.

Patients were diagnosed, staged and treated for HAT

according to the guidelines of the national sleeping sick-

ness control program of the country of sample collection.

In the present study, patients’ stage was assigned accord-

ing to WHO recommendations [10], i.e., stage 1 when

CSF WBC ≤ 5/μL and absence of parasite in CSF, stage 2

when CSF WBC > 5/μL and/or parasites detected in the

CSF. Patients were excluded when information to classify

them according to these criteria was not available.

Immunoassays

The levels of the markers were measured in pre-

treatment CSF using commercially available immunoas-

says (ELISA or multiplex bead suspension assay) follow-

ing manufacturers’ instructions as reported elsewhere

[23]. These included IgM (ICL, OR, USA), B2MG

(Calbiotech, CA, USA), neopterin (BRAHMS, Germany),

CXCL10 (Bio-Rad, CA, USA), VCAM-1, ICAM-1,

CXCL13 and MMP-9 (R&D Systems, UK).

Statistics

Statistical analyses were performed using IBM SPSS Sta-

tistics version 20.0.0 (IBM, NY, USA). Comparisons be-

tween groups were performed using the Mann–Whitney

U test, setting the level of significance at 0.05. Correla-

tions between molecules and the number of WBC were

assessed through the Spearman correlation rho coeffi-

cient. ROC analyses were performed using pROC pack-

age for S+ version 8.1 (TIBCO, Software Inc.) [26]. All

tests were two-tailed.

To assess the staging ability of each marker and to com-

pare their performances at high specificity, corrected par-

tial areas under the ROC curves (pAUC) were calculated

between 90 and 100% of specificity (SP) [26]. A cut-off

corresponding to 100% specificity was also computed.

Table 1 Pre-treatment characteristics of the investigated

patients

Stage 1 (n=14) Stage 2 (n=71)

Demography

Sex, F (n)* 7 32

Age, years [mean ± SD]† 37.1 [± 19.3] 36.9 [± 15.8]

Geographical origin

Malawi, n 3 27

Uganda, n 11 44

CSF examinations

Trypanosome positive, n 0 64

WBC/μL (median, range) 3 [2–5] 21 [4–1140]

* Fisher’s exact test, no significant differences.

† Mann–Whitney U test, no significant differences.
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To evaluate the power of the markers in predicting the

presence of trypanosomes in CSF, patients were classi-

fied based on the absence (n=21) or presence (n=64) of

parasites in their CSF. Complete AUC were then com-

puted as well as the cut-off corresponding to the best

combination of specificity (SP) and sensitivity (SE).

Panels of markers were obtained using an in-house

software, PanelomiX, based on a method of optimization

of cut-off values by iterative combination of biomarkers

and thresholds (rule-induction-like method) [18]. Highly

specific combinations of three molecules were com-

puted. Those showing the highest pAUC for discrimin-

ation between stage 1 and stage 2 patients were kept.

Statistical comparison between the pAUC of the panels

and those of the individual markers was obtained

through the Bootstrap test for two correlated ROC

curves.

Results
Concentration of markers in patients’ CSF

The CSF levels of IgM, B2MG, MMP-9, CXCL13,

CXCL10, ICAM-1, VCAM-1 and neopterin were mea-

sured on a population of 85 patients, comprising 14

stage 1 and 71 stage 2 (Table 1).

All molecules showed a higher CSF concentration in

S2 patients compared to S1. IgM, MMP-9 and CXCL13

showed the highest fold increase (S2/S1 concentration

ratio of 68, 12 and 187, respectively). However, the com-

parison using the Mann–Whitney U test, highlighted

significant differences between the two stages for all

markers (Table 2). These differences were confirmed

when patients from Uganda (S1 n=11; S2 n=44) were

considered separately, while only MMP-9, IgM and

B2MG could significantly discriminate between Mala-

wian S1 (n=3) and S2 (n=27) patients (Additional

Figure 1). Furthermore, all markers significantly correlated

(Spearman correlation) with the number of WBC counted

in the CSF, the current staging method, with MMP-9,

CXCL13 and CXCL10 having a rho coefficient > 0.5

(Table 2).

Staging ability of the markers

ROC analyses were performed to further assess the abil-

ity of the markers to discriminate between S1 and S2

patients in terms of specificity and sensitivity.

To highlight markers able to correctly rule out the

highest number of S1 patients, partial AUC between 90

and 100% of specificity were calculated together with a

cut-off in marker concentration at 100% of SP (Figure 1,

Additional file 1: Table 2).

IgM, MMP-9 and CXCL13 had a pAUC higher than

80%, but for 100% of specificity IgM showed higher sen-

sitivity (SE 77%, 76.6-87.3 95% CI), compared to MMP-9

(72% SE, 60.6-81-7 95% CI) and CXCL13 (69% SE,

57.8-80.3 95% CI).

A second group of markers with a pAUC between 70-

80% comprised VCAM-1, B2MG, ICAM-1 and neop-

terin. CXCL10 was highlighted as the less accurate mar-

ker, with a pAUC of only 55% and 3% sensitivity for

100% specificity.

To further assess the ability of the eight molecules to

identify patients with advanced S2 HAT, patients were

classified based on the absence (T-, n=21) or the pres-

ence (T+, n=64) of parasites in the CSF. The total area

under the ROC curve was considered. All markers, ex-

cept neopterin and CXCL10, discriminated between

T- and T+ patients with AUC > 80% and with perfor-

mances comparable to those of WBC (95% CI around

AUC overlapping) (Table 3).

Interestingly, when the specificity and sensitivity corre-

sponding to the best cut-off were taken into account, the

three best markers, i.e. IgM, MMP-9 and CXCL13,

turned out to be more specific (SP > 85%) than WBC,

which in turn was more sensitive (SE > 95%) (Table 3).

Combination of markers into panels

To evaluate whether a combination of markers could in-

crease the staging ability, panels of three molecules cor-

responding to 100% specificity were calculated. Two

different combinations showing the same staging perfor-

mances (pAUC 94%, 89.9-97.3 95% CI; SE 87.3%, 78.9-

Table 2 Concentration of markers in early (S1) and late (S2) stage T.b. rhodesiense patients

Marker [S1], median [S2], median [S2]/[S1] p value* Spearman rho†

IgM [μg/mL] 0.96 65.4 68.1 <0.0001 0.491

MMP-9 [pg/mL] 108.6 1309.9 12.1 <0.0001 0.554

CXCL13 [pg/mL] 8.2 1531.2 186.7 <0.0001 0.529

VCAM-1 [ng/mL] 22.6 67.3 3.0 <0.0001 0.372

B2MG [ng/mL] 964 3447 3.6 <0.0001 0.426

ICAM-1 [ng/mL] 1.99 9.6 4.8 <0.0001 0.457

Neopterin [nmol/L] 41.2 112.9 2.7 0.001 0.360

CXCL10 [ng/mL] 8.9 41.9 4.7 0.005 0.508

* Mann–Whitney U test.

† Correlation between the number of CSF WBC and CSF levels for each marker. Correlation was significant at 0.01 level.
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Figure 1 ROC curves representing the staging abilities of the eight markers. Dark gray areas represent the corrected pAUC between 90 and

100% of specificity obtained for each marker. Light gray zones represent a pAUC of 100%. The value of the cut-off corresponding to 100%

specificity comprised within the pAUC is reported on each graph together with the corresponding sensitivity% (SE%). Additional results are

reported in Additional file 1: Table 2.

Table 3 Ability of markers to classify T.b. rhodesiense patients according to the presence of parasites in CSF

Marker p value* AUC% (95% CI) Cut-off SP% (95% CI) SE% (95% CI)

IgM [μg/mL] < 0.0001 84.5 (73.9-95.2) 17.8 85.7 (66.7-100) 81.3 (71.9-90.6)

MMP-9 [pg/mL] < 0.0001 85.2 (74.3-96) 499.8 90.5 (76.2-100) 76.6 (65.6-85.9)

CXCL13 [pg/mL] < 0.0001 80.4 (69.1-91.8) 200.3 90.5 (76.2-100) 73.4 (62.5-84.4)

VCAM-1 [ng/mL] < 0.0001 83.2 (73.7-92.7) 43.9 76.2 (57.1-90.5) 78.1 (67.2-87.5)

B2MG [ng/mL] < 0.0001 82.0 (71.3-92.7) 1462 66.7 (47.6-85.7) 85.9 (76.6-93.8)

ICAM-1 [ng/mL] < 0.0001 83.3 (73–93.6) 4.7 81.0 (61.9-95.2) 73.4 (62.5-84.4)

Neopterin [nmol/L] < 0.0001 75.5 (63.9-87.1) 69.4 81.0 (61.9-95.2) 65.6 (54.7-76.6)

CXCL10 [ng/mL] 0.002 73.1 (59.3-86.8) 7.5 47.6 (28.6-66.7) 92.2 (84.4-98.4)

WBC (Cells/μL) < 0.0001 87.4 (77.4-97.4) 6.5 71.4 (52.4-90.5) 95.3 (89.1-100)

Patients without parasites detected in CSF, n=21; patients with parasite detected in CSF, n=64.

* Mann–Whitney U test.

SP% = specificity%; SE% = sensitivity%; 95% CI = 95% confidence interval.
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94.4 95% CI) were obtained. Both panels comprised

CXCL10 (cut-off 2.24 ng/mL) and CXCL13 (cut-off 23.3

pg/mL) in combination with either MMP-9 (cut-off

499.8 pg/mL) or IgM (cut-off 17.8 μg/mL) (Table 4).

Both panels were considered positive when at least two

out of three molecules were above their cut-offs.

When compared to the individual molecules, the two

panels were significantly more accurate for stage deter-

mination (Bootstrap test for two correlated ROC curves,

p<0.05). These combinations enabled the correct classifi-

cation of all S1 patients (100% SP) and 62 out of 71 S2

patients (87% SE).

Discussion
Stage determination in T. b. rhodesiense sleeping sick-

ness patients is a critical step in ensuring that the appro-

priate treatment is used [14]. An imperfect gold

standard for staging and the lack of a safe S2 drug high-

light the need for new tools for staging this form of dis-

ease [27,28]. In the present study we investigated, on a

small population of patients suffering from T. b. rhode-

siense HAT, a number of molecules (MMP-9, CXCL10,

CXCL13, IgM, neopterin, ICAM-1, VCAM-1 and

B2MG) known to be over-expressed in the CSF of late

stage T. b. gambiense patients [23]. Since melarsoprol is

still the only treatment for S2 rhodesiense patients, we

evaluated their staging ability as highly specific markers,

to try to limit unnecessary exposure of patients to this

toxic drug. IgM, MMP-9 and CXCL13 were shown to be

the most accurate discriminators between early and late

stage disease (pAUC ≥ 85%) and showed the same accur-

acy as WBC in distinguishing between patients having

parasites in their CSF from those without. Furthermore,

combination of the molecules into panels of three mar-

kers (IgM-CXCL13-CXCL10 or MMP-9-CXCL13-

CXCL10) significantly increased the staging accuracy,

leading to the correct classification of all S1 patients and

62 out of 71 S2 patients.

All the markers investigated here are known to be

involved in the immune response elicited by the pres-

ence of the parasite in the host. Interestingly, a different

behavior of the 8 molecules was observed in T. b. gam-

biense patients, which may reflect the differences in

immunopathogenesis [29] and clinical presentation

[3,30] of the two forms of HAT. It has already been pro-

posed, for example, that different activation pathways of

macrophages and astrocytes may take place in the two

forms of HAT [22]. Such differences may be responsible

of the less accurate staging ability of neopterin on T. b.

rhodesiense patients, compared to its very high staging

power on T. b. gambiense patients.

The role of IgM, the best individual marker in the

present study, in disease progression has been exten-

sively studied. An increased CSF concentration of IgM

of intrathecal origin was shown to be a good indicator of

brain involvement in HAT [15], leading to the develop-

ment of a rapid latex agglutination test (Latex/IgM) for

stage determination in the field [31]. However, when

assessed under field conditions, this assay did not repre-

sent an advantage compared to counting of WBC [31].

Furthermore, when used for evaluation of the outcome

after treatment, IgM levels were not an optimal indicator

of recovery due to their slow normalization [32]. Studies

in animal models have shown that HAT meningo-

encephalitis is characterized by an increased number of

leukocytes in the CNS [33]. CXCL13, also known as

BCA-1, is a chemokine mainly produced by dendritic

cells [34], which specifically attracts B and T lympho-

cytes to the site of inflammation [35]. Its over-

expression in CSF has been associated with increased

WBC and intrathecal production of immunoglobulins in

many pathological conditions [36,37], including late

stage T. b. gambiense HAT [19]. On the other hand,

MMP-9 (matrix-metalloproteinase 9), an enzyme invol-

ved in tissue homeostasis and remodeling [38,39], has

been extensively studied in a number of pathologies af-

fecting the CNS [39-42], in addition to T. b. gambiense

HAT [17]. Due to its ability to degrade β-dystroglycan,

this protein has been proposed to be involved in the pas-

sage of leukocytes through the glia limitans to reach the

brain parenchyma [43]. However, the temporal relationship

between the events leading to CNS invasion and the

Table 4 Panels of markers for staging T.b. rhodesiense patients obtained through a combination of 3 molecules

Panel Markers Cut-off pAUC% (95% CI)* SE% (95%CI)* p value†

1 CXCL10 [ng/mL] 2.2 94 (89.9-97.3) 87.3 (78.9-94.4) 0.0001

CXCL13 [pg/mL] 23.3 0.01

MMP-9 [pg/mL] 499.8 0.01

2 CXCL10 [ng/mL] 2.2 94 (89.9-97.3) 87.3 (78.9-94.4) 0.0001

CXCL13 [pg/mL] 23.3 0.01

IgM [μg/mL] 17.8 0.02

* pAUC and SE% were calculated for 100% SP.

† Comparison between the pAUC (90-100% SP) of the panel and those of the markers individually considered obtained through the Bootstrap test for two

correlated ROC curves.

Both panels are positive when ≥2 molecules are above their cut-off.
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appearance of various signs and symptoms of nervous sys-

tem dysfunction needs to be investigated further.

The markers investigated in the present study were

combined into panels in order to increase their accuracy

in stage determination. The utility of this approach to

achieve a better diagnostic accuracy has already been

shown [18,44]. Using this method, we highlighted highly

specific combinations comprising CXCL13, CXCL10 and

MMP-9 or IgM. Interestingly, CXCL10 was present in

both panels. This molecule was not efficient in staging

T. b. rhodesiense patients when considered individually.

However, when combined to CXCL13 and MMP-9 or

IgM, it helped in reaching a significantly increased staging

accuracy. This chemokine, which specifically attracts T

lymphocytes to the site of inflammation [45], was reported

to be produced by activated astrocytes in trypanosome-

infected mice [46]. The activation of astrocytes and ma-

crophages are early events in stage 2 infection [47-49],

suggesting that CXCL10 may represent an early indicator

of CNS involvement in HAT.

Interestingly, the markers did not show the same sta-

ging performances when assessed on patients classified

according to their geographic origin (i.e. Malawi or

Uganda). Although the low number of Malawian S1

patients (n=3) certainly represents a bias and may be re-

sponsible for the differences observed, this result could

reflect the variable clinical presentation of rhodesiense

disease observed in different foci [27]. This may suggest

that potentially different markers will be needed to stage

T. b. rhodesiense patients according to their geographical

origin and the parasite strain.

The present study has a number of limitations that

should be considered. First, the data presented resulted

from analyses on a small number of patients. This is a

common problem associated to the investigation of this

form of HAT. Collecting samples from T. b. rhodesiense

patients is considerably difficult, not only due to the

lower incidence of this disease compared to the gam-

biense form, but also as a consequence of a less effective

active screening, since the CATT test can only detect T.

b. gambiense cases [50]. To further evaluate the staging

properties of the markers, larger cohorts of patients

should be investigated. Moreover, due to the reported

differences between T. b. rhodesiense HAT among foci,

the results presented here should be validated in a more

controlled set of patients (i.e. in which the same para-

sitological examinations were performed).

Another drawback could be represented by the choice

of selecting highly specific markers, with the conse-

quence of compromising the sensitivity. Management of

T. b. rhodesiense patients is far from being optimal, thus

both choices of high specificity or sensitivity would be

associated either to a risk of missing the diagnosis of late

stage patients, or to the exposure of S1 patients to a

highly toxic stage 2 drug, respectively. However, it

should be emphasized that a new staging biomarker for

rhodesiense HAT would be combined with the detection

of parasites in CSF, which would increase the sensitivity,

and with clinical evaluation of the neurological status of

the patients.

The absence of information on neurological signs exhib-

ited by patients in the present study prevented an efficient

assessment of the association between the levels of the

markers and the signs of CNS involvement. This aspect is

particularly important in the light of a recent publication

on T. b. rhodesiense HAT reporting the poor association

between disease progression, the levels of a number of

cytokines and patients’ neurological manifestations [51].

The 8 markers investigated here behaved differently

when assessed on T. b. gambiense or T. b. rhodesiense

samples, underlining the differences between the two

forms of disease, and suggesting that potentially new

rhodesiense-specific markers could be discovered.

Despite the high staging accuracy shown by the com-

binations of markers described in the present study (i.e.

CXCL10-CXCL13-MMP-9 and CXCL10-CXCL13-IgM),

their translation into a rapid field diagnostic test could

be difficult, due to a potential increase in the costs of

production, suggesting that deeper investigations should

be performed. The individual staging power of the mole-

cules should be assessed on a larger cohort of T. b. rho-

desiense HAT patients, including CSF samples collected

during the post-therapeutic follow-up, and the possibility

of their translation into a point-of-care test for stage de-

termination in the field should be evaluated. Further-

more, their study in animal models, as already done for

IL-10 [52], could help in the further characterization of

the role of these markers in disease progression.

Conclusions
The results presented in this work on T. b. rhodesiense

sleeping sickness highlight the potential utility of IgM,

MMP-9 and CXCL13, alone or combined with CXCL10

in staging patients. We believe that this work has paved

the way for further investigations on the role of these

markers in detecting the meningo-encephalitic stage of

T. b. rhodesiense HAT, and therefore making a more ac-

curate choice of treatment.

Additional file

Additional file 1: Table 1. Details of the studies from which samples

were obtained. Table 2. Detailed calculation for the evaluation of the

staging ability of the eight markers. Figure 1. Comparison of the levels of

the markers between stage 1 (S1) and stage 2 (S2) T.b. rhodesiense

patients classified according to the country of sample collection. For each

country, differences between S1 and S2 were assessed using the Mann-

Whiney U test. * corresponds to a p value < 0.05; ** corresponds to a p

value < 0.001; *** corresponds to a p value < 0.0001.
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