M. Klymkowsky and P. Savagner, Epithelial-Mesenchymal Transition, The American Journal of Pathology, vol.174, issue.5, pp.1588-1593, 2009.
DOI : 10.2353/ajpath.2009.080545

URL : https://hal.archives-ouvertes.fr/inserm-00377343

J. Thiery, H. Acloque, R. Huang, and M. Nieto, Epithelial-Mesenchymal Transitions in Development and Disease, Cell, vol.139, issue.5, pp.871-890, 2009.
DOI : 10.1016/j.cell.2009.11.007

S. Mani, W. Guo, M. Liao, E. Eaton, and A. Ayyanan, The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells, Cell, vol.133, issue.4, pp.704-715, 2008.
DOI : 10.1016/j.cell.2008.03.027

A. Morel, M. Lievre, C. Thomas, G. Hinkal, and S. Ansieau, Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition, PLoS ONE, vol.133, issue.8, p.2888, 2008.
DOI : 10.1371/journal.pone.0002888.g005

P. Savagner, K. Yamada, and J. Thiery, The Zinc-Finger Protein Slug Causes Desmosome Dissociation, an Initial and Necessary Step for Growth Factor???induced Epithelial???Mesenchymal Transition, The Journal of Cell Biology, vol.14, issue.6, pp.1403-1419, 1997.
DOI : 10.1038/361543a0

M. Nieto, THE SNAIL SUPERFAMILY OF ZINC-FINGER TRANSCRIPTION FACTORS, Nature Reviews Molecular Cell Biology, vol.3, issue.3, pp.155-166, 2002.
DOI : 10.1038/nrm757

R. Mayor, R. Morgan, and M. Sargent, Induction of the prospective neural crest of Xenopus, Development, vol.121, pp.767-777, 1995.

J. Shi, C. Severson, J. Yang, D. Wedlich, and M. Klymkowsky, Snail2 controls mesodermal BMP/Wnt induction of neural crest, Development, vol.138, issue.15, 2011.
DOI : 10.1242/dev.064394

J. Dale, P. Malapert, J. Chal, G. Vilhais-neto, and M. Maroto, Oscillations of the Snail Genes in the Presomitic Mesoderm Coordinate Segmental Patterning and Morphogenesis in Vertebrate Somitogenesis, Developmental Cell, vol.10, issue.3, pp.355-366, 2006.
DOI : 10.1016/j.devcel.2006.02.011

L. Romano and R. Runyan, Slug Is a Mediator of Epithelial???Mesenchymal Cell Transformation in the Developing Chicken Heart, Developmental Biology, vol.212, issue.1, pp.243-254, 1999.
DOI : 10.1006/dbio.1999.9339

C. Come, F. Magnino, F. Bibeau, D. S. Barbara, P. Becker et al., Snail and slug play distinct roles during breast carcinoma progression. Clinical cancer research : an official journal of the American Association for, Cancer Research, vol.12, pp.5395-5402, 2006.
DOI : 10.1158/1078-0432.ccr-06-0478

URL : https://hal.archives-ouvertes.fr/inserm-00148369

P. Bhat-nakshatri, H. Appaiah, C. Ballas, P. Pick-franke, R. Goulet et al., SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype, BMC Cancer, vol.297, issue.6, p.411, 2010.
DOI : 10.1152/ajpgi.00292.2009

V. Arnoux, M. Nassour, L. Helgoualc-'h, A. Hipskind, R. Savagner et al., Erk5 Controls Slug Expression and Keratinocyte Activation during Wound Healing, Molecular Biology of the Cell, vol.19, issue.11, pp.4738-4749, 2008.
DOI : 10.1091/mbc.E07-10-1078

URL : https://hal.archives-ouvertes.fr/inserm-00318681

S. Elloul, M. Elstrand, J. Nesland, C. Trope, and G. Kvalheim, Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma, Cancer, vol.200, issue.8, pp.1631-1643, 2005.
DOI : 10.1002/cncr.20946

T. Dimeo, K. Anderson, P. Phadke, C. Fan, and C. Perou, A Novel Lung Metastasis Signature Links Wnt Signaling with Cancer Cell Self-Renewal and Epithelial-Mesenchymal Transition in Basal-like Breast Cancer, Cancer Research, vol.69, issue.13, pp.5364-5373, 2009.
DOI : 10.1158/0008-5472.CAN-08-4135

G. Storci, P. Sansone, D. Trere, S. Tavolari, and M. Taffurelli, gene expression, The Journal of Pathology, vol.12, issue.1, pp.25-37, 2008.
DOI : 10.1002/path.2254

J. Taube, J. Herschkowitz, K. Komurov, A. Zhou, and S. Gupta, Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes, Proceedings of the National Academy of Sciences, vol.107, issue.35, pp.15449-15454, 2010.
DOI : 10.1073/pnas.1004900107

L. Bai and L. Rohrschneider, s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue, Genes & Development, vol.24, issue.17, pp.1882-1892
DOI : 10.1101/gad.1932810

C. Daniel, P. Strickland, and Y. Friedmann, Expression and Functional Role of E- and P-Cadherins in Mouse Mammary Ductal Morphogenesis and Growth, Developmental Biology, vol.169, issue.2, pp.511-519, 1995.
DOI : 10.1006/dbio.1995.1165

J. Visvader and G. Smith, Murine Mammary Epithelial Stem Cells: Discovery, Function, and Current Status, Cold Spring Harbor Perspectives in Biology, vol.3, issue.2, 2011.
DOI : 10.1101/cshperspect.a004879

A. Van-keymeulen, A. Rocha, M. Ousset, B. Beck, and G. Bouvencourt, Distinct stem cells contribute to mammary gland development and maintenance, Nature, vol.99, issue.7372, pp.189-193, 2011.
DOI : 10.1038/nature10573

R. Jiang, Y. Lan, C. Norton, J. Sundberg, and T. Gridley, The slug gene is not essential for mesoderm or neural crest development in mice, Developmental Biology, vol.198, issue.2, pp.277-285, 1998.
DOI : 10.1016/S0012-1606(98)80005-5

E. Oztas, E. Avci, A. Ozcan, A. Sayan, E. Tulchinsky et al., Novel monoclonal antibodies detect Smad-interacting protein 1 (SIP1) in the cytoplasm of human cells from multiple tumor tissue arrays, Experimental and Molecular Pathology, vol.89, issue.2, pp.182-189, 2010.
DOI : 10.1016/j.yexmp.2010.05.010

K. De-ome, F. Jr, . Lj, and H. Bern, Development of mammary tumours from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice, Cancer research, vol.78, pp.515-520, 1959.

G. Dontu, K. Jackson, E. Mcnicholas, M. Kawamura, and W. Abdallah, Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells, Breast Cancer Research, vol.36, issue.6, pp.605-615, 2004.
DOI : 10.1046/j.1365-2184.36.s.1.6.x

P. Savagner, D. Kusewitt, E. Carver, F. Magnino, and C. Choi, Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes, Journal of Cellular Physiology, vol.154, issue.3, pp.858-866, 2005.
DOI : 10.1002/jcp.20188

URL : https://hal.archives-ouvertes.fr/inserm-00148036

W. Guo, Z. Keckesova, J. Donaher, T. Shibue, and V. Tischler, Slug and Sox9 Cooperatively Determine the Mammary Stem Cell State, Cell, vol.148, issue.5, pp.1015-1028, 2012.
DOI : 10.1016/j.cell.2012.02.008

E. Tan, S. Thuault, L. Caja, T. Carletti, and C. Heldin, Regulation of Transcription Factor Twist Expression by the DNA Architectural Protein High Mobility Group A2 during Epithelial-to-Mesenchymal Transition, Journal of Biological Chemistry, vol.287, issue.10, pp.7134-7145, 2012.
DOI : 10.1074/jbc.M111.291385

A. Pietersen, H. Horlings, M. Hauptmann, A. Langerod, and A. Ajouaou, EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer, Breast Cancer Research, vol.121, issue.6, p.109, 2008.
DOI : 10.1016/j.cell.2005.02.029

M. Asselin-labat, K. Sutherland, H. Barker, R. Thomas, and M. Shackleton, Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation, Nature Cell Biology, vol.98, issue.2, pp.201-209, 2007.
DOI : 10.1073/pnas.251547698

A. Dhasarathy, M. Kajita, and P. Wade, The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha, 2007.

D. Nonaka, L. Chiriboga, and B. Rubin, Sox10: A Pan-Schwannian and Melanocytic Marker, The American Journal of Surgical Pathology, vol.32, issue.9, pp.1291-1298, 2008.
DOI : 10.1097/PAS.0b013e3181658c14

F. Wegwitz, M. Kluth, C. Ma¨nz, B. Otto, and K. Gruner, Tumorigenic WAP-T Mouse Mammary Carcinoma Cells: A Model for a Self-Reproducing Homeostatic Cancer Cell System, PLoS ONE, vol.16, issue.Pt 24, 2010.
DOI : 10.1371/journal.pone.0012103.s007

M. Katoh, Network of WNT and Other Regulatory Signaling Cascades in Pluripotent Stem Cells and Cancer Stem Cells, Current Pharmaceutical Biotechnology, vol.12, issue.2, pp.160-170, 2011.
DOI : 10.2174/138920111794295710

Y. Sun, L. Shao, H. Bai, Z. Wang, and W. Wu, Slug deficiency enhances self-renewal of hematopoietic stem cells during hematopoietic regeneration, Blood, vol.115, issue.9, pp.1709-1717, 2010.
DOI : 10.1182/blood-2009-07-232934

J. Perez-losada and I. Sanchez-garcia, New functions for the Snail family of transcription factors: Two-faced proteins, Cell Cycle, vol.9, issue.14, pp.2706-2708, 2010.
DOI : 10.4161/cc.9.14.12326

K. Danielson, C. Oborn, E. Durban, J. Butel, and D. Medina, Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro., Proceedings of the National Academy of Sciences, vol.81, issue.12, pp.3756-3760, 1984.
DOI : 10.1073/pnas.81.12.3756

L. Young, K. Deome, P. Blair, D. Pitelka, and R. Cardiff, Development and characterization of the BALB/cNIV mouse strain, Cancer research, vol.44, pp.4333-4336, 1984.