R. Tenhunen, H. Marver, and R. Schmid, Microsomal heme oxygenase. Characterization of the enzyme, J Biol Chem, vol.244, pp.6388-6394, 1969.

M. Maines, Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications, FASEB J, vol.2, pp.2557-2568, 1988.

T. Ingi, G. Chiang, and G. Ronnett, The regulation of heme turnover and carbon monoxide biosynthesis in cultured primary rat olfactory receptor neurons, J Neurosci, vol.16, pp.5621-5628, 1996.

R. Motterlini, A. Gonzales, R. Foresti, J. Clark, C. Green et al., Heme Oxygenase-1??Derived Carbon Monoxide Contributes to the Suppression of Acute Hypertensive Responses In Vivo, Circulation Research, vol.83, issue.5, pp.568-577, 1998.
DOI : 10.1161/01.RES.83.5.568

L. Applegate, P. Luscher, and R. Tyrrell, Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells, Cancer Res, vol.51, pp.974-978, 1991.

J. Ewing and M. Maines, Rapid induction of heme oxygenase 1 mRNA and protein by hyperthermia in rat brain: heme oxygenase 2 is not a heat shock protein., Proceedings of the National Academy of Sciences, vol.88, issue.12, pp.5364-5368, 1991.
DOI : 10.1073/pnas.88.12.5364

R. Stocker, Y. Yamamoto, A. Mcdonagh, A. Glazer, and B. Ames, Bilirubin is an antioxidant of possible physiological importance, Science, vol.235, issue.4792, pp.1043-1046, 1987.
DOI : 10.1126/science.3029864

L. Otterbein, F. Bach, J. Alam, M. Soares, T. Lu et al., Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nature Med, vol.6, pp.422-428, 2000.

R. Motterlini and L. Otterbein, The therapeutic potential of carbon monoxide, Nature Reviews Drug Discovery, vol.51, issue.9, pp.728-743, 2010.
DOI : 10.1038/nrd3228

S. Ryter and L. Otterbein, Carbon monoxide in biology and medicine, BioEssays, vol.90, issue.3, pp.270-280, 2004.
DOI : 10.1002/bies.20005

L. Otterbein, Carbon Monoxide: Innovative Anti-inflammatory Properties of an Age-Old Gas Molecule, Antioxidants & Redox Signaling, vol.4, issue.2, pp.309-319, 2002.
DOI : 10.1089/152308602753666361

R. Motterlini, J. Clark, R. Foresti, P. Sarathchandra, B. Mann et al., Carbon Monoxide-Releasing Molecules: Characterization of Biochemical and Vascular Activities, Circulation Research, vol.90, issue.2, pp.17-24, 2002.
DOI : 10.1161/hh0202.104530

T. Johnson, B. Mann, J. Clark, R. Foresti, C. Green et al., Metal Carbonyls: A New Class of Pharmaceuticals?, Angewandte Chemie International Edition, vol.42, issue.32, pp.3722-3729, 2003.
DOI : 10.1002/anie.200301634

R. Motterlini, B. Mann, T. Johnson, J. Clark, R. Foresti et al., Bioactivity and Pharmacological Actions of Carbon Monoxide-Releasing Molecules, Current Pharmaceutical Design, vol.9, issue.30, pp.2525-2539, 2003.
DOI : 10.2174/1381612033453785

J. Clark, P. Naughton, S. Shurey, C. Green, T. Johnson et al., Cardioprotective Actions by a Water-Soluble Carbon Monoxide-Releasing Molecule, Circulation Research, vol.93, issue.2, pp.2-8, 2003.
DOI : 10.1161/01.RES.0000084381.86567.08

R. Motterlini, P. Sawle, S. Bains, J. Hammad, A. R. Foresti et al., CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule, The FASEB Journal, vol.19, pp.284-286, 2005.
DOI : 10.1096/fj.04-2169fje

M. Desmard, R. Foresti, D. Morin, M. Dagoussat, A. Berdeaux et al., by Carbon Monoxide-Releasing Molecules, Antioxidants & Redox Signaling, vol.16, issue.2, pp.153-163, 2011.
DOI : 10.1089/ars.2011.3959

URL : https://hal.archives-ouvertes.fr/inserm-00656413

K. Kramkowski, A. Leszczynska, A. Mogielnicki, S. Chlopicki, A. Fedorowicz et al., Antithrombotic Properties of Water-Soluble Carbon Monoxide-Releasing Molecules, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.9, pp.2149-2157, 2012.
DOI : 10.1161/ATVBAHA.112.253989

URL : https://hal.archives-ouvertes.fr/inserm-00732395

A. Yabluchanskiy, P. Sawle, S. Homer-vanniasinkam, C. Green, R. Foresti et al., CORM-3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke*, Critical Care Medicine, vol.40, issue.2, pp.544-552, 2012.
DOI : 10.1097/CCM.0b013e31822f0d64

D. Fei, X. Meng, M. Zhao, K. Kang, G. Tan et al., Enhanced induction of heme oxygenase-1 suppresses thrombus formation and affects the protein C system in sepsis, Translational Research, vol.159, issue.2, pp.99-10969, 2012.
DOI : 10.1016/j.trsl.2011.10.009

K. Maruyama, E. Morishita, T. Yuno, A. Sekiya, H. Asakura et al., Carbon monoxide (CO)-releasing molecule-derived CO regulates tissue factor and plasminogen activator inhibitor type 1 in human endothelial cells, Thrombosis Research, vol.130, issue.3, pp.188-193, 2012.
DOI : 10.1016/j.thromres.2012.07.002

A. Hervera, S. Leanez, R. Negrete, R. Motterlini, and O. Pol, Carbon Monoxide Reduces Neuropathic Pain and Spinal Microglial Activation by Inhibiting Nitric Oxide Synthesis in Mice, PLoS ONE, vol.7, issue.8, p.43693, 2012.
DOI : 10.1371/journal.pone.0043693.t001

URL : https://hal.archives-ouvertes.fr/inserm-00746573

H. Song, C. Bergstrasser, N. Rafat, S. Hoger, M. Schmidt et al., The carbon monoxide releasing molecule (CORM-3) inhibits expression of vascular cell adhesion molecule-1 and E-selectin independently of haem oxygenase-1 expression, British Journal of Pharmacology, vol.4, issue.3, pp.769-780, 2009.
DOI : 10.1111/j.1476-5381.2009.00215.x

B. Sun, X. Zou, Y. Chen, P. Zhang, and G. Shi, Preconditioning of Carbon Monoxide Releasing Molecule-derived CO Attenuates LPS-induced Activation of HUVEC, International Journal of Biological Sciences, vol.4, pp.270-278, 2008.
DOI : 10.7150/ijbs.4.270

C. Bergstraesser, S. Hoeger, H. Song, L. Ermantraut, M. Hottenrot et al., Inhibition of VCAM-1 expression in endothelial cells by CORM-3: The role of the ubiquitin???proteasome system, p38, and mitochondrial respiration, Free Radical Biology and Medicine, vol.52, issue.4, pp.794-802, 2012.
DOI : 10.1016/j.freeradbiomed.2011.11.035

Y. Caumartin, J. Stephen, J. Deng, D. Lian, Z. Lan et al., Carbon monoxide-releasing molecules protect against ischemia???reperfusion injury during kidney transplantation, Kidney International, vol.79, issue.10, pp.1080-1089, 2011.
DOI : 10.1038/ki.2010.542

URL : http://doi.org/10.1038/ki.2010.542

T. Takagi, Y. Naito, K. Uchiyama, T. Suzuki, I. Hirata et al., Carbon Monoxide Liberated from Carbon Monoxide-Releasing Molecule Exerts an Anti-inflammatory Effect on Dextran Sulfate Sodium-Induced Colitis in Mice, Digestive Diseases and Sciences, vol.13, issue.Suppl 1, pp.1663-1671, 2011.
DOI : 10.1007/s10620-010-1484-y

J. Chung, D. Shin, M. Zheng, Y. Joe, H. Pae et al., Carbon monoxide, a reaction product of heme oxygenase-1, suppresses the expression of C-reactive protein by endoplasmic reticulum stress through modulation of the unfolded protein response, Molecular Immunology, vol.48, issue.15-16, pp.1793-1799, 2011.
DOI : 10.1016/j.molimm.2011.05.014

A. Ahanger, S. Prawez, D. Kumar, R. Prasad, . Amarpal et al., Wound healing activity of carbon monoxide liberated from CO-releasing molecule (CO-RM), Naunyn-Schmiedeberg's Archives of Pharmacology, vol.278, issue.1, pp.93-102, 2011.
DOI : 10.1007/s00210-011-0653-7

Y. Wei, P. Chen, M. De-bruyn, W. Zhang, E. Bremer et al., Carbon monoxide-Releasing Molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats, BMC Gastroenterology, vol.16, issue.4, p.42, 2010.
DOI : 10.1681/ASN.2004090736

P. Chen, B. Sun, H. Chen, G. Wang, S. Pan et al., Effects of carbon monoxide releasing molecule-liberated CO on severe acute pancreatitis in rats, Cytokine, vol.49, issue.1, pp.15-23, 2010.
DOI : 10.1016/j.cyto.2009.09.013

N. Maicas, M. Ferrandiz, I. Devesa, R. Motterlini, M. Koenders et al., The CO-releasing molecule CORM-3 protects against articular degradation in the K/BxN serum transfer arthritis model, European Journal of Pharmacology, vol.634, issue.1-3, pp.184-191, 2010.
DOI : 10.1016/j.ejphar.2010.02.028

K. Katada, A. Bihari, S. Mizuguchi, N. Yoshida, T. Yoshikawa et al., Carbon Monoxide Liberated from CO-Releasing Molecule (CORM-2) Attenuates Ischemia/Reperfusion (I/R)-Induced Inflammation in the Small Intestine, Inflammation, vol.150, issue.Suppl 2, pp.92-100, 2010.
DOI : 10.1007/s10753-009-9162-y

L. Lin, F. Ho, S. Yen, P. Wu, L. Hung et al., Carbon monoxide induces cyclooxygenase-2 expression through MAPKs and PKG in phagocytes, International Immunopharmacology, vol.10, issue.12, pp.1520-1525, 2010.
DOI : 10.1016/j.intimp.2010.08.026

S. Lancel, S. Hassoun, R. Favory, B. Decoster, R. Motterlini et al., Carbon Monoxide Rescues Mice from Lethal Sepsis by Supporting Mitochondrial Energetic Metabolism and Activating Mitochondrial Biogenesis, Journal of Pharmacology and Experimental Therapeutics, vol.329, issue.2, pp.641-648, 2009.
DOI : 10.1124/jpet.108.148049

S. Mizuguchi, J. Stephen, R. Dencev-bihari, N. Markovic, S. Suehiro et al., CORM-3-derived CO modulates polymorphonuclear leukocyte migration across the vascular endothelium by reducing levels of cell surface-bound elastase, AJP: Heart and Circulatory Physiology, vol.297, issue.3, pp.920-929, 2009.
DOI : 10.1152/ajpheart.00305.2009

K. Tsoyi, T. Lee, Y. Lee, H. Kim, H. Seo et al., Heme-Oxygenase-1 Induction and Carbon Monoxide-Releasing Molecule Inhibit Lipopolysaccharide (LPS)-Induced High-Mobility Group Box 1 Release in Vitro and Improve Survival of Mice in LPS- and Cecal Ligation and Puncture-Induced Sepsis Model in Vivo, Molecular Pharmacology, vol.76, issue.1, pp.173-182, 2009.
DOI : 10.1124/mol.109.055137

G. Cepinskas, K. Katada, A. Bihari, and R. Potter, Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice, AJP: Gastrointestinal and Liver Physiology, vol.294, issue.1, pp.184-191, 2008.
DOI : 10.1152/ajpgi.00348.2007

S. Basuroy, S. Bhattacharya, C. Leffler, and H. Parfenova, Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-?? in cerebral vascular endothelial cells, AJP: Cell Physiology, vol.296, issue.3, pp.422-432, 2009.
DOI : 10.1152/ajpcell.00381.2008

D. Backer, O. Elinck, E. Blanckaert, B. Leybaert, L. Motterlini et al., Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress, Gut, vol.58, issue.3, pp.347-356, 2009.
DOI : 10.1136/gut.2008.155481

B. Sun, Y. Sun, Z. Sun, and X. Chen, CO liberated from CORM-2 modulates the inflammatory response in the liver of thermally injured mice, World Journal of Gastroenterology, vol.14, issue.4, pp.547-553, 2008.
DOI : 10.3748/wjg.13.6127

B. Sun, J. Q. Sun, Y. Sun, Z. Chen, X. Chen et al., Carbon liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice, World Journal of Gastroenterology, vol.13, issue.46, pp.6183-6190, 2007.
DOI : 10.3748/wjg.13.6183

K. Davidge, G. Sanguinetti, C. Yee, A. Cox, C. Mcleod et al., Carbon Monoxide-releasing Antibacterial Molecules Target Respiration and Global Transcriptional Regulators, Journal of Biological Chemistry, vol.284, issue.7, pp.4516-4524, 2009.
DOI : 10.1074/jbc.M808210200

A. Tavares, M. Teixeira, C. Romao, J. Seixas, L. Nobre et al., Reactive Oxygen Species Mediate Bactericidal Killing Elicited by Carbon Monoxide-releasing Molecules, Journal of Biological Chemistry, vol.286, issue.30, pp.26708-26717, 2011.
DOI : 10.1074/jbc.M111.255752

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143634

T. Murray, C. Okegbe, Y. Gao, B. Kazmierczak, R. Motterlini et al., The Carbon Monoxide Releasing Molecule CORM-2 Attenuates Pseudomonas aeruginosa Biofilm Formation, PLoS ONE, vol.41, issue.Pt 6, p.35499, 2012.
DOI : 10.1371/journal.pone.0035499.s004

L. Nobre, J. Seixas, C. Romao, and L. Saraiva, Antimicrobial Action of Carbon Monoxide-Releasing Compounds, Antimicrobial Agents and Chemotherapy, vol.51, issue.12, pp.4303-4307, 2007.
DOI : 10.1128/AAC.00802-07

R. Takamiya, C. Hung, S. Hall, K. Fukunaga, T. Nagaishi et al., High-Mobility Group Box 1 Contributes to Lethality of Endotoxemia in Heme Oxygenase-1???Deficient Mice, American Journal of Respiratory Cell and Molecular Biology, vol.41, issue.2, pp.129-135, 2008.
DOI : 10.1165/rcmb.2008-0331OC

M. Ferrandiz, N. Maicas, I. Garcia-arnandis, M. Terencio, R. Motterlini et al., Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis, Annals of the Rheumatic Diseases, vol.67, issue.9, pp.1211-1217, 2008.
DOI : 10.1136/ard.2007.082412

E. Masini, A. Vannacci, P. Failli, R. Mastroianni, L. Giannini et al., A carbon monoxide-releasing molecule (CORM-3) abrogates polymorphonuclear granulocyte-induced activation of endothelial cells and mast cells, The FASEB Journal, vol.22, issue.9, pp.3380-3388, 2008.
DOI : 10.1096/fj.08-107110

M. Guillen, J. Megias, V. Clerigues, F. Gomar, and M. Alcaraz, The CO-releasing molecule CORM-2 is a novel regulator of the inflammatory process in osteoarthritic chondrocytes, Rheumatology, vol.47, issue.9, pp.1323-1328, 2008.
DOI : 10.1093/rheumatology/ken264

J. Megias, J. Busserolles, and M. Alcaraz, The carbon monoxide-releasing molecule CORM-2 inhibits the inflammatory response induced by cytokines in Caco-2 cells, British Journal of Pharmacology, vol.44, issue.8, pp.977-986, 2007.
DOI : 10.1038/sj.bjp.0707184

J. Megias, M. Guillen, A. Bru, F. Gomar, and M. Alcaraz, The Carbon Monoxide-Releasing Molecule Tricarbonyldichlororuthenium(II) Dimer Protects Human Osteoarthritic Chondrocytes and Cartilage from the Catabolic Actions of Interleukin-1??, Journal of Pharmacology and Experimental Therapeutics, vol.325, issue.1, pp.56-61, 2008.
DOI : 10.1124/jpet.107.134650

P. Urquhart, G. Rosignoli, D. Cooper, R. Motterlini, and M. Perretti, Carbon Monoxide-Releasing Molecules Modulate Leukocyte-Endothelial Interactions under Flow, Journal of Pharmacology and Experimental Therapeutics, vol.321, issue.2, pp.656-662, 2007.
DOI : 10.1124/jpet.106.117218

M. Bani-hani, D. Greenstein, B. Mann, C. Green, and R. Motterlini, Modulation of Thrombin-Induced Neuroinflammation in BV-2 Microglia by Carbon Monoxide-Releasing Molecule 3, Journal of Pharmacology and Experimental Therapeutics, vol.318, issue.3, pp.1315-1322, 2006.
DOI : 10.1124/jpet.106.104729

M. Bani-hani, D. Greenstein, B. Mann, C. Green, and R. Motterlini, A carbon monoxide-releasing molecule (CORM-3) attenuates lipopolysaccharideand interferon-gamma-induced inflammation in microglia, Pharmacol Rep, pp.58132-144, 2006.

P. Sawle, R. Foresti, B. Mann, T. Johnson, C. Green et al., Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages, British Journal of Pharmacology, vol.103, issue.6, pp.800-810, 2005.
DOI : 10.1038/sj.bjp.0706241

P. Sawle, J. Hammad, I. Fairlamb, B. Moulton, O. Brien et al., Bioactive Properties of Iron-Containing Carbon Monoxide-Releasing Molecules, Journal of Pharmacology and Experimental Therapeutics, vol.318, issue.1, pp.403-410, 2006.
DOI : 10.1124/jpet.106.101758

L. Hewison, S. Crook, T. Johnson, B. Mann, H. Adams et al., Iron indenyl carbonyl compounds: CO-releasing molecules, Dalton Transactions, vol.348, issue.38
DOI : 10.1039/c0dt00203h

S. Crook, B. Mann, J. Meijer, H. Adams, P. Sawle et al., [Mn(CO)4{S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule, Mn(CO) 4 {S 2 CNMe(CH 2 CO 2 H)}], a new water-soluble CO-releasing molecule, pp.4230-4235, 2011.
DOI : 10.1039/c1dt10125k

C. Szabo, Gaseotransmitters: New Frontiers for Translational Science, Science Translational Medicine, vol.2, issue.59, pp.59-54, 2010.
DOI : 10.1126/scitranslmed.3000721

L. Oresmaa, H. Tarvainen, K. Machal, and M. Haukka, Ruthenium imidazole oxime carbonyls and their activities as CO-releasing molecules, Dalton Transactions, vol.51, issue.36, pp.11170-11175, 2012.
DOI : 10.1039/c2dt31002c

U. Schatzschneider, Photoactivated Biological Activity of Transition-Metal Complexes, European Journal of Inorganic Chemistry, vol.9, issue.10, pp.1451-1467, 2010.
DOI : 10.1002/ejic.201000003

G. Dordelmann, H. Pfeiffer, A. Birkner, and U. Schatzschneider, Silicium Dioxide Nanoparticles As Carriers for Photoactivatable CO-Releasing Molecules (PhotoCORMs), Inorganic Chemistry, vol.50, issue.10, pp.4362-4367, 2011.
DOI : 10.1021/ic1024197

S. Romanski, B. Kraus, U. Schatzschneider, J. Neudorfl, S. Amslinger et al., Acyloxybutadiene Iron Tricarbonyl Complexes as Enzyme-Triggered CO-Releasing Molecules (ET-CORMs), Angewandte Chemie International Edition, vol.180, issue.10, pp.2392-2396, 2011.
DOI : 10.1002/anie.201006598

U. Hasegawa, A. Van-der-vlies, E. Simeoni, C. Wandrey, and J. Hubbell, Carbon Monoxide-Releasing Micelles for Immunotherapy, Journal of the American Chemical Society, vol.132, issue.51, pp.18273-18280, 2010.
DOI : 10.1021/ja1075025

F. Zobi, A. Degonda, M. Schaub, and A. Bogdanova, Complexes, Inorganic Chemistry, vol.49, issue.16, pp.7313-7322, 2010.
DOI : 10.1021/ic100458j

J. Koenitzer and B. Freeman, Redox signaling in inflammation: interactions of endogenous electrophiles and mitochondria in cardiovascular disease, Annals of the New York Academy of Sciences, vol.2, issue.Pt 1
DOI : 10.1111/j.1749-6632.2010.05559.x

D. Willis, A. Moore, R. Frederick, and D. Willoughby, Heme oxygenase: A novel target for the modulation of inflammatory response, Nature Medicine, vol.72, issue.1, pp.87-90, 1996.
DOI : 10.1038/nm0196-87

A. Yachie, Y. Niida, T. Wada, N. Igarashi, H. Kaneda et al., Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency, Journal of Clinical Investigation, vol.103, issue.1, pp.129-135, 1999.
DOI : 10.1172/JCI4165

K. Poss and S. Tonegawa, Heme oxygenase 1 is required for mammalian iron reutilization, Proceedings of the National Academy of Sciences, vol.94, issue.20, pp.10919-10924, 1997.
DOI : 10.1073/pnas.94.20.10919

L. Bellner, J. Wolstein, K. Patil, M. Dunn, and M. Laniado-schwartzman, Biliverdin Rescues the HO-2 Null Mouse Phenotype of Unresolved Chronic Inflammation Following Corneal Epithelial Injury, Investigative Opthalmology & Visual Science, vol.52, issue.6, pp.3246-3253, 2011.
DOI : 10.1167/iovs.10-6219

J. Sarady-andrews, F. Liu, D. Gallo, A. Nakao, M. Overhaus et al., Biliverdin administration protects against endotoxin-induced acute lung injury in rats, AJP: Lung Cellular and Molecular Physiology, vol.289, issue.6, pp.1131-1137, 2005.
DOI : 10.1152/ajplung.00458.2004

S. Ryter, J. Alam, and A. Choi, Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications, Physiological Reviews, vol.86, issue.2, pp.583-650, 2006.
DOI : 10.1152/physrev.00011.2005

B. Sun, H. Sun, C. Liu, J. Shen, Z. Chen et al., Role of CO-Releasing Molecules Liberated CO in Attenuating Leukocytes Sequestration and Inflammatory Responses in the Lung of Thermally Injured Mice, Journal of Surgical Research, vol.139, issue.1, pp.128-135, 2007.
DOI : 10.1016/j.jss.2006.08.032

S. Lancel, D. Montaigne, X. Marechal, C. Marciniak, S. Hassoun et al., Carbon Monoxide Improves Cardiac Function and Mitochondrial Population Quality in a Mouse Model of Metabolic Syndrome, PLoS ONE, vol.7, issue.8, p.41836, 2012.
DOI : 10.1371/journal.pone.0041836.s002

R. Foresti and R. Motterlini, Interaction of Carbon Monoxide with Transition Metals: Evolutionary Insights into Drug Target Discovery, Current Drug Targets, vol.11, issue.12, pp.1595-1604, 2010.
DOI : 10.2174/1389450111009011595

C. Taille, J. El-benna, S. Lanone, J. Boczkowski, and R. Motterlini, Mitochondrial Respiratory Chain and NAD(P)H Oxidase Are Targets for the Antiproliferative Effect of Carbon Monoxide in Human Airway Smooth Muscle, Journal of Biological Chemistry, vol.280, issue.27, pp.25350-25360, 2005.
DOI : 10.1074/jbc.M503512200

L. Iacono, L. Boczkowski, J. Zini, R. Salouage, I. Berdeaux et al., A carbon monoxide-releasing molecule (CORM-3) uncouples mitochondrial respiration and modulates the production of reactive oxygen species, Free Radical Biology and Medicine, vol.50, issue.11, pp.1556-1564, 2011.
DOI : 10.1016/j.freeradbiomed.2011.02.033

URL : https://hal.archives-ouvertes.fr/inserm-00597718

K. Srisook, S. Han, H. Choi, M. Li, H. Ueda et al., CO from enhanced HO activity or from CORM-2 inhibits both O2??? and NO production and downregulates HO-1 expression in LPS-stimulated macrophages, Biochemical Pharmacology, vol.71, issue.3, pp.307-318, 2006.
DOI : 10.1016/j.bcp.2005.10.042

S. Basuroy, S. Bhattacharya, D. Tcheranova, Y. Qu, R. Regan et al., HO-2 provides endogenous protection against oxidative stress and apoptosis caused by TNF-?? in cerebral vascular endothelial cells, AJP: Cell Physiology, vol.291, issue.5, pp.897-908, 2006.
DOI : 10.1152/ajpcell.00032.2006

D. Babu, S. Soenen, K. Raemdonck, G. Leclercq, D. Backer et al., TNF-α/Cycloheximide-Induced Oxidative Stress and Apoptosis in Murine Intestinal Epithelial MODE-K Cells, Current Pharmaceutical Design, vol.18, issue.28, pp.4414-4425, 2012.
DOI : 10.2174/138161212802481291

URL : http://doi.org/10.2174/138161212802481291

C. Hierholzer, B. Harbrecht, J. Menezes, J. Kane, J. Macmicking et al., Essential Role of Induced Nitric Oxide in the Initiation of the Inflammatory Response after Hemorrhagic Shock, The Journal of Experimental Medicine, vol.6, issue.6
DOI : 10.1097/00024382-199511000-00004

K. Min, M. Yang, S. Kim, I. Jou, and E. Joe, Astrocytes Induce Hemeoxygenase-1 Expression in Microglia: A Feasible Mechanism for Preventing Excessive Brain Inflammation, Journal of Neuroscience, vol.26, issue.6, pp.1880-1887, 2006.
DOI : 10.1523/JNEUROSCI.3696-05.2006

S. Chung, X. Liu, A. Macias, R. Baron, and M. Perrella, Heme oxygenase-1???derived carbon monoxide enhances the host defense response to microbial sepsis in mice, Journal of Clinical Investigation, vol.118, issue.1, pp.239-247, 2008.
DOI : 10.1172/JCI32730DS1

M. Desmard, K. Davidge, O. Bouvet, D. Morin, D. Roux et al., A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia, The FASEB Journal, vol.23, issue.4, pp.1023-1031, 2009.
DOI : 10.1096/fj.08-122804

A. Tavares, L. Nobre, and L. Saraiva, A role for reactive oxygen species in the antibacterial properties of carbon monoxide-releasing molecules, FEMS Microbiology Letters, vol.336, issue.1, pp.1-10, 2012.
DOI : 10.1111/j.1574-6968.2012.02633.x

J. Wilson, H. Jesse, R. Poole, and K. Davidge, Antibacterial Effects of Carbon Monoxide, Current Pharmaceutical Biotechnology, vol.13, issue.6, pp.760-768, 2012.
DOI : 10.2174/138920112800399329

L. Nobre, A. Shahrour, F. Dopazo, J. Saraiva, and L. , Exploring the antimicrobial action of a carbon monoxide-releasing compound through wholegenome transcription profiling of Escherichia coli, pp.813-824, 2009.

R. Foresti, H. J. Clark, J. Johnson, R. Mann, B. Friebe et al., Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule, British Journal of Pharmacology, vol.93, issue.3, pp.453-460, 2004.
DOI : 10.1038/sj.bjp.0705825

J. Obirai, S. Hamadi, A. Ithurbide, C. Wartelle, T. Nyokong et al., UV-Visible and Electrochemical Monitoring of Carbon Monoxide Release by Donor Complexes to Myoglobin Solutions and to Electrodes Modified with Films Containing Hemin, Electroanalysis, vol.7, issue.17, pp.1689-1695, 2006.
DOI : 10.1002/elan.200603571

URL : https://hal.archives-ouvertes.fr/inserm-00194718

J. Wang, J. Karpus, B. Zhao, Z. Luo, and P. Chen, A Selective Fluorescent Probe for Carbon Monoxide Imaging in Living Cells, Angewandte Chemie International Edition, vol.50, issue.38, pp.9652-9656, 2012.
DOI : 10.1002/anie.201203684

B. Michel, A. Lippert, and C. Chang, A Reaction-Based Fluorescent Probe for Selective Imaging of Carbon Monoxide in Living Cells Using a Palladium-Mediated Carbonylation, Journal of the American Chemical Society, vol.134, issue.38, pp.15668-15671, 2012.
DOI : 10.1021/ja307017b

S. Mclean, B. Mann, and R. Poole, Sulfite species enhance carbon monoxide release from CO-releasing molecules: Implications for the deoxymyoglobin assay of activity, Analytical Biochemistry, vol.427, issue.1, pp.36-40, 2012.
DOI : 10.1016/j.ab.2012.04.026