Influence of covariance between random effects in design for nonlinear mixed-effect models with an illustration in pediatric pharmacokinetics.

Abstract : Nonlinear mixed-effect models are used increasingly during drug development. For design, an alternative to simulations is based on the Fisher information matrix. Its expression was derived using a first-order approach, was then extended to include covariance and implemented into the R function PFIM. The impact of covariance on standard errors, amount of information, and optimal designs was studied. It was also shown how standard errors can be predicted analytically within the framework of rich individual data without the model. The results were illustrated by applying this extension to the design of a pharmacokinetic study of a drug in pediatric development.
Type de document :
Article dans une revue
Journal of Biopharmaceutical Statistics, Taylor & Francis, 2014, 24 (3), pp.471-92. 〈10.1080/10543406.2014.888443〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00769812
Contributeur : Thu Thuy Nguyen <>
Soumis le : mercredi 4 juin 2014 - 11:48:49
Dernière modification le : mardi 11 octobre 2016 - 13:44:34
Document(s) archivé(s) le : jeudi 4 septembre 2014 - 10:37:02

Fichier

JBS_Dumont_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cyrielle Dumont, Marylore Chenel, France Mentré. Influence of covariance between random effects in design for nonlinear mixed-effect models with an illustration in pediatric pharmacokinetics.. Journal of Biopharmaceutical Statistics, Taylor & Francis, 2014, 24 (3), pp.471-92. 〈10.1080/10543406.2014.888443〉. 〈inserm-00769812〉

Partager

Métriques

Consultations de la notice

528

Téléchargements de fichiers

389