S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care, vol.27, issue.5, pp.1047-1053, 2004.
DOI : 10.2337/diacare.27.5.1047

B. Goldstein, Insulin resistance as the core defect in type 2 diabetes mellitus, The American Journal of Cardiology, vol.90, issue.5, pp.3-10, 2002.
DOI : 10.1016/S0002-9149(02)02553-5

P. Wilson, D. Agostino, R. Parise, H. Sullivan, L. Meigs et al., Metabolic Syndrome as a Precursor of Cardiovascular Disease and Type 2 Diabetes Mellitus, Circulation, vol.112, issue.20, pp.3066-3072, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.539528

G. Pieper and W. Siebeneich, Diabetes-Induced Endothelial Dysfunction is Prevented by Long-Term Treatment with the Modified Iron Chelator, Hydroxyethyl Starch Conjugated-Deferoxamine, Journal of Cardiovascular Pharmacology, vol.30, issue.6, pp.734-738, 1997.
DOI : 10.1097/00005344-199712000-00006

N. Winer and J. Sowers, Diabetes and Arterial Stiffening, Adv Cardiol, vol.44, pp.245-251, 2007.
DOI : 10.1159/000096745

E. Belin-de-chantemele, E. Vessieres, A. Guihot, B. Toutain, M. Maquignau et al., Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow, Cardiovascular Research, vol.81, issue.4, pp.788-796, 2009.
DOI : 10.1093/cvr/cvn334

URL : https://hal.archives-ouvertes.fr/inserm-00344939

F. Pourageaud, D. Mey, and J. , Vasomotor responses in chronically hyperperfused and hypoperfused rat mesenteric arteries, Am J Physiol, vol.274, pp.1301-1307, 1998.

D. Tulis, J. Unthank, and R. Prewitt, Flow-induced arterial remodeling in rat mesenteric vasculature

C. Bouvet, E. Belin-de-chantemele, A. Guihot, E. Vessieres, A. Bocquet et al., Henrion D: Flow-induced remodeling in resistance arteries from obese Zucker rats is associated with endothelial dysfunction E: Small Artery Remodeling: Current Concepts and Questions, Hypertension J Vasc Res, vol.50, issue.47, pp.248-254183, 2007.

F. Tronc, M. Wassef, B. Esposito, D. Henrion, S. Glagov et al., Role of NO in Flow-Induced Remodeling of the Rabbit Common Carotid Artery, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.16, issue.10, pp.1256-1262, 1996.
DOI : 10.1161/01.ATV.16.10.1256

C. Yan, A. Huang, G. Kaley, and D. Sun, Chronic high blood flow potentiates shear stress-induced release of NO in arteries of aged rats, AJP: Heart and Circulatory Physiology, vol.293, issue.5, pp.3105-3110, 2007.
DOI : 10.1152/ajpheart.00627.2007

J. Wautier, M. Wautier, A. Schmidt, G. Anderson, O. Hori et al., Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications., Proceedings of the National Academy of Sciences, vol.91, issue.16, pp.7742-7746, 1994.
DOI : 10.1073/pnas.91.16.7742

V. Portik-dobos, M. Anstadt, J. Hutchinson, M. Bannan, and A. Ergul, Evidence for a Matrix Metalloproteinase Induction/Activation System in Arterial Vasculature and Decreased Synthesis and Activity in Diabetes, Diabetes, vol.51, issue.10, pp.3063-3068, 2002.
DOI : 10.2337/diabetes.51.10.3063

Y. Castier, R. Brandes, G. Leseche, A. Tedgui, and S. Lehoux, p47phox-Dependent NADPH Oxidase Regulates Flow-Induced Vascular Remodeling, Circulation Research, vol.97, issue.6, pp.47-533, 2005.
DOI : 10.1161/01.RES.0000181759.63239.21

P. Ulrich and A. Cerami, Protein Glycation, Diabetes, and Aging, Recent Progress in Hormone Research, vol.56, issue.1, pp.1-21, 2001.
DOI : 10.1210/rp.56.1.1

J. Su, P. Lucchesi, R. Gonzalez-villalobos, D. Palen, B. Rezk et al., Role of Advanced Glycation End Products With Oxidative Stress in Resistance Artery Dysfunction in Type 2 Diabetic Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.8, pp.1432-1438, 2008.
DOI : 10.1161/ATVBAHA.108.167205

L. Loufrani, B. Levy, and D. Henrion, Defect in Microvascular Adaptation to Chronic Changes in Blood Flow in Mice Lacking the Gene Encoding for Dystrophin, Circulation Research, vol.91, issue.12, pp.1183-1189, 2002.
DOI : 10.1161/01.RES.0000047505.11002.81

F. Pourageaud, D. Mey, and J. , Structural properties of rat mesenteric small arteries after 4-wk exposure to elevated or reduced blood flow, Am J Physiol, vol.273, pp.1699-1706, 1997.

J. Tuttle, R. Nachreiner, A. Bhuller, K. Condict, B. Connors et al., Shear level influences resistance artery remodeling: wall dimensions, cell density, and eNOS expression, Am J Physiol Heart Circ Physiol, vol.281, pp.1380-1389, 2001.

J. Unthank, J. Nixon, H. Burkhart, and S. Fath, Dalsing MC: Early collateral and microvascular adaptations to intestinal artery occlusion in rat, Am J Physiol, vol.271, pp.914-923, 1996.

O. Dumont, F. Pinaud, A. Guihot, C. Baufreton, L. Loufrani et al., Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: improvement by a treatment with hydralazine, Cardiovascular Research, vol.77, issue.3, pp.600-608, 2008.
DOI : 10.1093/cvr/cvm055

URL : https://hal.archives-ouvertes.fr/hal-01390572

B. Driss, A. Devaux, C. Henrion, D. Duriez, M. Thuillez et al., Hemodynamic Stresses Induce Endothelial Dysfunction and Remodeling of Pulmonary Artery in Experimental Compensated Heart Failure, Circulation, vol.101, issue.23, pp.2764-2770, 2000.
DOI : 10.1161/01.CIR.101.23.2764

K. Retailleau, E. Belin-de-chantemele, S. Chanoine, A. Guihot, E. Vessieres et al., Reactive Oxygen Species and Cyclooxygenase 2-Derived Thromboxane A2 Reduce Angiotensin II Type 2 Receptor Vasorelaxation in Diabetic Rat Resistance Arteries, Hypertension, vol.55, issue.2, pp.339-344
DOI : 10.1161/HYPERTENSIONAHA.109.140236

E. Belin-de-chantemele, K. Retailleau, F. Pinaud, E. Vessieres, A. Bocquet et al., Notch3 Is a Major Regulator of Vascular Tone in Cerebral and Tail Resistance Arteries, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.12, pp.2216-2224, 2008.
DOI : 10.1161/ATVBAHA.108.171751

URL : https://hal.archives-ouvertes.fr/inserm-00326627

D. Henrion, I. Laher, R. Laporte, and J. Bevan, Further evidence from an elastic artery that angiotensin II amplifies noradrenaline-induced contraction through activation of protein kinase C, European Journal of Pharmacology, vol.224, issue.1, pp.13-20, 1992.
DOI : 10.1016/0014-2999(92)94812-A

F. Dowell, D. Henrion, J. Benessiano, P. Poitevin, and B. Levy, Chronic infusion of low-dose angiotensin II potentiates the adrenergic response in vivo, Journal of Hypertension, vol.14, issue.2, pp.177-182, 1996.
DOI : 10.1097/00004872-199602000-00005

E. Vessieres, E. Belin-de-chantemele, B. Toutain, A. Guihot, A. Jardel et al., Cyclooxygenase-2 Inhibition Restored Endothelium-Mediated Relaxation in Old Obese Zucker Rat Mesenteric Arteries, Frontiers in Physiology, vol.1, p.145, 2010.
DOI : 10.3389/fphys.2010.00145

K. Retailleau, E. Belin-de-chantemele, S. Chanoine, A. Guihot, E. Vessieres et al., Reactive Oxygen Species and Cyclooxygenase 2-Derived Thromboxane A2 Reduce Angiotensin II Type 2 Receptor Vasorelaxation in Diabetic Rat Resistance Arteries, Hypertension, vol.55, issue.2, pp.339-344, 2010.
DOI : 10.1161/HYPERTENSIONAHA.109.140236

R. Tamarat, J. Silvestre, M. Huijberts, J. Benessiano, T. Ebrahimian et al., Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8555-8560, 2003.
DOI : 10.1073/pnas.1236929100

O. Brouwers, P. Niessen, G. Haenen, T. Miyata, M. Brownlee et al., Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress, Diabetologia, vol.51, issue.5, pp.989-1000, 2010.
DOI : 10.1007/s00125-010-1677-0

O. Dumont, L. Loufrani, and D. Henrion, Key Role of the NO-Pathway and Matrix Metalloprotease-9 in High Blood Flow-Induced Remodeling of Rat Resistance Arteries, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.2, pp.317-324, 2007.
DOI : 10.1161/01.ATV.0000254684.80662.44

URL : https://hal.archives-ouvertes.fr/inserm-00136211

E. Belin-de-chantemele, E. Vessieres, O. Dumont, A. Guihot, B. Toutain et al., Reactive Oxygen Species Are Necessary for High Flow (Shear Stress)-induced Diameter Enlargement of Rat Resistance Arteries, Microcirculation, vol.16, issue.5, pp.391-402, 2009.
DOI : 10.1080/10739680902816301

A. Walter, N. Etienne-selloum, M. Sarr, M. Kane, A. Beretz et al., Angiotensin II Induces the Vascular Expression of VEGF and MMP-2 in vivo: Preventive Effect of Red Wine Polyphenols, Journal of Vascular Research, vol.45, issue.5, pp.386-394, 2008.
DOI : 10.1159/000121408

URL : https://hal.archives-ouvertes.fr/hal-00293413

L. Loufrani, Z. Li, B. Levy, D. Paulin, and D. Henrion, Excessive Microvascular Adaptation to Changes in Blood Flow in Mice Lacking Gene Encoding for Desmin, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.10, pp.1579-1584, 2002.
DOI : 10.1161/01.ATV.0000032652.24932.1A

A. Eichmann, L. Yuan, D. Moyon, F. Lenoble, L. Pardanaud et al., Vascular development: from precursor cells to branched arterial and venous networks, The International Journal of Developmental Biology, vol.49, issue.2-3, pp.259-267, 2005.
DOI : 10.1387/ijdb.041941ae

R. Hilgers, P. Schiffers, W. Aartsen, G. Fazzi, J. Smits et al., Tissue Angiotensin-Converting Enzyme in Imposed and Physiological Flow-Related Arterial Remodeling in Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.5, pp.892-897, 2004.
DOI : 10.1161/01.ATV.0000126374.60073.3d

G. Kojda and R. Hambrecht, Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy?, Cardiovascular Research, vol.67, issue.2, pp.187-197, 2005.
DOI : 10.1016/j.cardiores.2005.04.032

D. Gorny, L. Loufrani, N. Kubis, B. Levy, and D. Henrion, Chronic Hydralazine Improves Flow (Shear Stress)-Induced Endothelium-Dependent Dilation in Mouse Mesenteric Resistance Arteries in Vitro, Microvascular Research, vol.64, issue.1, pp.127-134, 2002.
DOI : 10.1006/mvre.2002.2417

O. Sorop, E. Bakker, A. Pistea, and J. Spaan, Calcium channel blockade prevents pressure-dependent inward remodeling in isolated subendocardial resistance vessels, AJP: Heart and Circulatory Physiology, vol.291, issue.3, pp.1236-1245, 2006.
DOI : 10.1152/ajpheart.00838.2005

M. Heil, T. Ziegelhoeffer, S. Wagner, B. Fernandez, A. Helisch et al., Collateral Artery Growth (Arteriogenesis) After Experimental Arterial Occlusion Is Impaired in Mice Lacking CC-Chemokine Receptor-2, Circulation Research, vol.94, issue.5, pp.671-677, 2004.
DOI : 10.1161/01.RES.0000122041.73808.B5

H. Steinberg, H. Chaker, R. Leaming, A. Johnson, G. Brechtel et al., Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance., Journal of Clinical Investigation, vol.97, issue.11, pp.2601-2610, 1996.
DOI : 10.1172/JCI118709

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC507347

D. Endemann, Q. Pu, D. Ciuceis, C. Savoia, C. Virdis et al., Persistent Remodeling of Resistance Arteries in Type 2 Diabetic Patients on Antihypertensive Treatment, Hypertension, vol.43, issue.2, pp.399-404, 2004.
DOI : 10.1161/01.HYP.0000112029.03691.e7

F. Crijns, B. Wolffenbuttel, D. Mey, J. , S. Boudier et al., Mechanical properties of mesenteric arteries in diabetic rats: consequences of outward remodeling, Am J Physiol, vol.276, pp.1672-1677, 1999.

M. Cooper, J. Rumble, R. Komers, H. Du, K. Jandeleit et al., Diabetes-Associated Mesenteric Vascular Hypertrophy Is Attenuated by Angiotensin-Converting Enzyme Inhibition, Diabetes, vol.43, issue.10, pp.1221-1228, 1994.
DOI : 10.2337/diab.43.10.1221

J. Rumble, M. Cooper, T. Soulis, A. Cox, L. Wu et al., Vascular hypertrophy in experimental diabetes. Role of advanced glycation end products., Journal of Clinical Investigation, vol.99, issue.5, pp.1016-1027, 1997.
DOI : 10.1172/JCI119229

A. Goldin, J. Beckman, A. Schmidt, and M. Creager, Advanced Glycation End Products: Sparking the Development of Diabetic Vascular Injury, Circulation, vol.114, issue.6, pp.597-605, 2006.
DOI : 10.1161/CIRCULATIONAHA.106.621854

A. Stirban, M. Negrean, B. Stratmann, T. Gawlowski, T. Horstmann et al., Benfotiamine Prevents Macro- and Microvascular Endothelial Dysfunction and Oxidative Stress Following a Meal Rich in Advanced Glycation End Products in Individuals With Type 2 Diabetes, Diabetes Care, vol.29, issue.9, pp.2064-2071, 2006.
DOI : 10.2337/dc06-0531

D. Sun, A. Huang, A. Koller, and G. Kaley, Decreased Arteriolar Sensitivity to Shear Stress in Adult Rats is Reversed by Chronic Exercise Activity, Microcirculation, vol.9, issue.2, pp.91-97, 2002.
DOI : 10.1080/713774057

M. , C. , C. , and C. Enos, Supplementary figure 3: The mRNA levels for the following proteins were determined using Quantitative Real-time PCR Mesenteric arteries were dissected in ice-cold physiological salt solution (PSS) and kept in 100 µL RNAlater (Sigma) at -20°C until RNA extraction using the RNeasy® micro kit (Qiagen). 200 ng of total RNA extracted from each artery were used to synthesize cDNA for RT-PCR using the QuantiTect® Reverse Transcription kit (Qiagen) according to the manufacturer instruction, RT PCR reactions were performed on a, p.7500

E. Methods-as-in-belin-de-chantemele, E. Vessieres, O. Dumont, A. Guihot, B. Toutain et al., Reactive Oxygen Species Are Necessary for High Flow (Shear Stress)-induced Diameter Enlargement of Rat Resistance Arteries, Microcirculation, vol.16, issue.5, pp.391-402, 2009.
DOI : 10.1080/10739680902816301

*. P<0, 05, HF vs. NF arteries; #P<0.05, ZDF vs