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ABSTRACT  1 

Background: Prolonged postprandial hypertriglyceridemia is a potential risk factor for 2 

cardiovascular diseases. In the context of obesity, this is associated with a chronic imbalance 3 

of lipid partitioning oriented towards storage and not towards -oxidation. 4 

Objectives: We tested the hypothesis that the physical structure of fat in a meal can modify 5 

absorption, chylomicron transport and further metabolic handling of dietary fatty acids. 6 

Design: 9 normal-weight and 9 obese subjects were fed 40g of milkfat (+
13

C-7 

triacylglycerols), either emulsified or not, in breakfasts of identical composition. We 8 

measured the postprandial triglyceride content and size of the chylomicron-rich fraction, 9 

plasma kinetics of 
13

C-fatty acids, exogenous lipid oxidation using breath-test/indirect 10 

calorimetry, and fecal excretion.  11 

Results: The emulsified fat resulted in earlier (>1h) and sharper chylomicron and 
13

C-fatty 12 

acids peaks in plasma compared to spread fat in both groups (P<0.0001). After 2h, the 13 

emulsified fat increased ApoB48 concentration (9.7 0.7 vs 7.1 0.9 mg/L; P<0.05) in the 14 

normal-weight subjects compared to the spread fat. For the obese subjects, emulsified fat 15 

resulted in 3-fold larger chylomicrons (218 24 nm) compared to the spread fat (P<0.05). The 16 

emulsified fat induced higher dietary fatty acid spillover in plasma and sharper 
13

CO2 17 

appearance, provoking increased exogenous lipid oxidation in each group: from 45% to 52% 18 

in normal-weight subjects (P<0.05), 40% to 57% in obese (P<0.01).   19 

Conclusions: This study supports a new concept of ―slow vs fast fat‖ whereby intestinal 20 

absorption can be modulated by structuring of dietary fat to modulate postprandial lipemia 21 

and lipid -oxidation in humans of different BMI. 22 

 23 

Key words: intestinal absorption; chylomicron; emulsion; stable isotopes; obesity. 24 

25 
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INTRODUCTION 26 

The metabolic importance of intestinal absorption and transport of nutrients in the 27 

postprandial period is recognized as important in the context of metabolic diseases such as 28 

obesity and type 2 diabetes (1). Regarding lipid metabolism, plasma kinetics, timing of peak 29 

of lipemia as well as chylomicron size are recognized as factors determining metabolic 30 

complications that are still an open field of research (2-4). For this reason, control of intestinal 31 

lipid absorption, the resulting chylomicron transport dynamics and ultimate dietary lipid fate 32 

may be an effective tool in the management of metabolic diseases. Recent studies have shown 33 

differential effects of oral sensory stimulation with high vs low amounts of dietary fat on 34 

intestinal lipid absorption (5). The possible effects of fatty acid (FA) profile of an oral fat load 35 

on chylomicron size have been suggested (6-10). While both fat load and composition can 36 

affect postprandial lipid absorption, few studies have investigated the effects of fat structure 37 

on the postprandial metabolism of an identical lipid load. In diabetes, the concept of 38 

―slow/low glycemic index carbohydrates and fast/high glycemic index carbohydrates‖ is well 39 

established and has facilitated the development of specific foods and/or cooking methods to 40 

control postprandial glycemia (11). We thus raised the question of whether a similar concept 41 

may be applicable to dietary fat according to the way it is structured in the meal. 42 

Dietary lipids are incorporated in food products with different physicochemical structures, 43 

e.g., in dispersed lipid droplets in oil-in-water emulsions like ice cream or in a continuous 44 

lipid phase in butter and margarine. Emulsions are the most widespread fat structures, in 45 

processed foods and enteral formulas, and are therefore of interest regarding their role in lipid 46 

digestion and absorption (12). Indeed, we have previously demonstrated in rodents the 47 

importance of lipid emulsified structure on FA absorption and -oxidation (13-15). However, 48 

the impact of fat structure on the kinetics of lipid absorption and dietary FA handling in 49 

humans remains to be elucidated. Such effects also deserve to be elucidated in obese subjects 50 

that present altered storage function of dietary FA in the postprandial state (16).  51 
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We therefore hypothesized that the physicochemical structure of the fat in a meal could 52 

modulate postprandial lipemia and fat partitioning: storage vs oxidation, and that the effect 53 

would be more pronounced in obese subjects. We investigated the metabolic response to fat-54 

containing meals (40 g) differing only in the structuring of fat, emulsified or not, in healthy 55 

young normal weight and obese men. Measurements included chylomicron number and size, 56 

FA β-oxidation and FA excretion in feces. The aim of this study was to define the 57 

contribution of fat structure and subject BMI on the postprandial lipemia and metabolism of 58 

dietary FA.  59 

 60 

SUBJECTS AND METHODS 61 

Study design 62 

The study was an open label trial with a cross-over randomized controlled design 63 

involving 2 days of metabolic testing separated by at least three weeks (Supplemental Figure 64 

1). It was conducted at the Human Nutrition Research Center Rhône-Alpes (CRNH-RA; 65 

Lyon, France) according to the Second Declaration of Helsinki and the French Huriet-66 

Serusclat law. The LIPINFLOX study was approved by the Scientific Ethics Committee of 67 

Lyon Sud-Est-II and AFSSAPS and registered at Clinical Trials (#NCT01249378). 68 

Volunteers received written and oral information and their medical history was reviewed. In 69 

addition they underwent a physical examination and fasting clinical analysis were assessed 70 

before enrolment. Informed written consent was obtained from all subjects. Volunteers 71 

performed trial in the period from April 2010 to July 2011. During the protocol, all subjects 72 

were asked to continue their regular diet and activity except for the week before and the 3-d 73 

period following each test day. Subjects were told to avoid foods naturally rich in 
13

C and 74 

were given a list. For 48 h prior to testing subjects were asked to refrain from consuming 75 

alcohol and to avoid exercise. In addition, subjects were provided with a standardized dinner 76 
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the evening prior to testing. Compliance was checked through diet records, 5 days before and 77 

3 days after each test day. 78 

After an overnight of fast, subjects ingested one of the two test breakfasts. The primary 79 

outcome measured was the effect of fat structure on postprandial lipemia. Secondary 80 

outcomes measured were the effect of fat structure and BMI on postprandial lipid metabolism. 81 

Previous studies on lipemia (17) and lipid oxidation (18) were used for the power analysis: a 82 

minimum sample size of 8 subjects per BMI group was calculated to be necessary to detect 83 

significant changes in these parameters. The treatments were randomized according to a 84 

random allocation sequence performed by a CRNH-RA biostatistician using Stat® v.11; two 85 

randomization lists were generated and stratified over BMI. Subjects were anonymized using 86 

a number corresponding to randomization sequence order. 87 

 88 

Subjects  89 

Twenty-two healthy men were recruited, 11 normal-weight (NW) and 11 obese, and 20 90 

completed the study (see Flow Diagram online). One subject in each group was not included 91 

in data analyses due to abnormal postprandial lipid metabolism; therefore 18 healthy subjects 92 

divided in two groups, 9 NW and 9 obese with comparable mean age were finally tested for 93 

the primary outcome, (Table 1). Volunteers were required to be non-smokers, sedentary or 94 

having <4h per week of physical activity and non-claustrophobic. We excluded persons under 95 

medication interfering with lipid metabolism, with psychological illness, or those with 96 

eating/metabolic disorders. In addition, subjects were required to have had stable weight, to 97 

be free of diabetes and to have not made blood donation for 3 months prior to the start of the 98 

study. Data were collected at CRNH-RA. 99 

 100 
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Test meals 101 

The test breakfasts were isoenergetic, equal in nutrient composition (Table 2) and both 102 

consisted of bread (50 g), skimmed milk (160 mL) and anhydrous milk fat (AMF; 40 g), 103 

containing 600 mg of tracers, either spread on bread or emulsified in skim milk. Both meals 104 

had the same composition as no additional emulsifier was added because milk proteins are 105 

sufficient to provide a submicronic milk fat emulsion. Prior to the test day, a mixture of 106 

labeled triacylglycerols (TAG) proportionally representing each FA type present in test fat 107 

was first incorporated into melted milk fat: 300 mg of [1,1,1-
13

C3] tripalmitin for long-chain 108 

saturated FA, 210 mg of [1,1,1-
13

C3] triolein for unsaturated FA and 90 mg of [1,1,1-
13

C3] 109 

trioctanoin for short- and medium-chain FA (99 atom% 
13

C, Eurisotop, Saint-Aubin, France). 110 

For the emulsion test, melted labeled milk fat was coarsly pre-mixed in skimmed milk 111 

(ProScientific Inc., Oxford, USA) and then further finely emulsified (4x 1 min, Vibra-cell
TM

 112 

Ultrasonic Processor, Sonics, Newtown, USA) (Supplemental Figure 2). Test products were 113 

then kept at 4°C overnight. 114 

 A second meal was served 5 hours after breakfast, containing pasta (200 g), turkey (100 115 

g), butter (10 g), olive oil (10 g), bread (50 g), stewed fruit (100 g)  which provided 713 kcal 116 

(2985 kJ) with 29%, 51% and 20% of energy as lipids (22.7 g), carbohydrates (91.5 g) and 117 

proteins (35.7 g) respectively. All subjects were given 10 minutes to eat breakfast and 30 118 

minutes for lunch. During the test, participants were allowed to drink 200 mL of water.  119 

 120 

Test fat characterization 121 

Emulsion droplet size was measured by Dynamic Light Scattering (Zetasizer Nano S, 122 

Malvern, France). Specific surface area of emulsion droplets was calculated using Laser Light 123 

Scattering (Mastersizer 2000, Malvern, France). The melting temperature and crystalline state 124 

of the fat was characterized by Differential Scanning Calorimetry (DSC) using a Q1000 DSC 125 
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(TA Instruments, New Castle, USA) and by powder X-ray Diffraction (XRD) using a D8 126 

Advance diffractometer (Bruker, Germany). 127 

 128 

Hunger assessment 129 

Subjective assessment of hunger was measured on a 10-cm visual analogue scale 2 min 130 

before breakfast and 2 min before lunch. Specific question to assess hunger was ―How hungry 131 

do you feel?‖. 132 

 133 

Metabolic explorations 134 

Blood samples were obtained at baseline and at regular intervals after the meal, from an 135 

antecubital arm vein through a catheter and collected in vacutainer sterile tubes (with EDTA 136 

when necessary). Plasma was separated by centrifugation (1500 g, 10 min, 4°C) and stored at  137 

-20°C until analysis or at 4°C for separation of the chylomicron-rich fraction (CMRF). 138 

Metabolic tests were divided into postprandial phases including a first period of 5 hours (0 139 

to 300 min) post-breakfast in the morning, a second period of 3 hours post-lunch (300 to 480 140 

min) and the entire exploration day (0 to 480 min). 141 

Indirect calorimetry was performed during metabolic testing using a Deltatrac II™ 142 

calorimeter (Sensormedics, Yorba Linda, CA, USA). Respiratory exchanges (VO2 and VCO2) 143 

were recorded for periods of 30 or 60 minutes during the 8-h test period. Substrate oxidations 144 

were calculated using Ferrannini’s equations (19). Urine was collected at 0, 300 and 480 min 145 

to determine nitrogen excretion for oxidation calculations. For breath test, expired gas 146 

samples were obtained at baseline, each 30 min for 8-h and then at 720 and 1440 min to check 147 

return to baseline. Subjects had to collect and freeze their stools individually over 72 h after 148 

the test day. 149 

 150 
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Plasma metabolite and hormone measurements 151 

Non esterified fatty acid (NEFA) concentrations were determined by an enzymatic 152 

method Wako® (Neuss, Deutschland). ApoB48 was measured by ELISA (Gentaur, France). 153 

Insulin concentration was determined by RIA (CISBIO Bi insuline IRMA, France). 154 

 155 

Isolation and analysis of chylomicron-rich fractions  156 

To collect the CMRF, containing chylomicrons and their large remnants, 250 µL of 157 

plasma was deposited below a layer of 850 µL of distilled/deionized water and centrifuged at 158 

80 000 rpm for 30 min using a Sorvall Kendro ultracentrifuge (Asheville, NC, USA). The 159 

floating layer was collected and stored at -80°C. TAG and cholesterol concentrations of 160 

CMRF were measured with a lipase glycerokinase and a cholesterol esterase/oxidase method, 161 

respectively, on a AU 2700 Beckman Coulter® (O’ Cllagan’s mils, Ireland) and expressed as 162 

differences in concentration over baseline. Hydrodynamic diameter of CMRF was measured 163 

by dynamic light scattering at 25°C using a ZetaSizer NanoS (Malvern, UK) using 1.0658 cP 164 

and 1.33 as viscosity and refractive index of the aqueous phase, respectively. Gravity-165 

separated fraction containing chylomicrons and their large remnants are reported to size in the 166 

range 70-450 nm (20-22), and postprandial increase in cholesterol content of such fraction is 167 

about <0.2 mM (23). Our fraction collected by ultracentrifugation contained particles of mean 168 

diameter up to 200-300 nm and with postprandial increase in cholesterol of <0.15 mM in NW 169 

and <0.25 mM in obese subjects. Our CMRF is thus typical of fractions that are rich in 170 

chylomicrons and that also contain large remnants. 171 

 172 

13
C-fatty acids in plasma lipids, NEFA, CMRF and stools 173 

Sample preparation. Internal standards were added according to the fraction analyzed 174 

(heptadecanoic acid or glycerol triheptadecanoate). 175 
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Plasma processing. Plasma samples were submitted to direct methylation as described 176 

previously (24).  177 

NEFA processing. Total lipids were extracted from plasma aliquots at 120 min after 178 

breakfast consumption (700µL) with 3 mL of a mixture of chloroform/methanol (2:1 v/v) 179 

according to Folch method (25). NEFA fractions were obtained therefrom by TLC on silica-180 

gel plates with a mobile phase of hexane/diethyl ether/acetic acid (80:20:1 v/v/v). NEFA were 181 

derivatized to Fatty Acid Methyl Esters (FAMEs) (24). 182 

CMRF processing. Lipids were extracted from CMRF at 120 min after breakfast 183 

according to Folch method (25). TAG fractions were then processed as the NEFA fractions 184 

above, to obtain the FAMEs from CMRF. 185 

Stool processing. Fecal collections were weighed, homogenized and a precisely weighed 186 

aliquot was collected. Total lipids were extracted according to a modification of the Folch 187 

method and derivatized to obtain FAMEs (24). 188 

Sample analysis. The amounts of FA in stools, plasma and NEFA were assessed by 189 

GC/MS using a quadrupole mass spectrometer connected to a gas chromatograph (MS 5975 190 

and GC6890, Agilent Technologies, Massy, France). The isotopic enrichment of palmitic and 191 

oleic acids was determined using GC/C/IRMS (Isoprime, GV Instruments, Manchester, 192 

UK)(24). The 
13

C enrichments were expressed as atom percent excess (APE). The plasma 193 

concentrations of non-esterified labelled palmitic and oleic acids (called [
13

C-NEFA]) and 194 

non-esterified unlabelled palmitic and oleic acids (called [
12

C-NEFA]) were also obtained 195 

from these analyses. 196 

 197 

Calculations associated with apparent dietary fatty acid “spillover”  198 

NEFA analysis at 120 min after breakfast was used to calculate 
13

C enrichment in plasma 199 

NEFA as: [
13

C-NEFA] / ( [
13

C-NEFA] + [
12

C-NEFA] ) (expressed in % enrichment). The 200 

proportion of exogenous NEFA in total plasma NEFA, expressed in %, was estimated by the 201 
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ratio of the 
13

C enrichment in plasma NEFA to the 
13

C enrichment of corresponding FA in the 202 

ingested milk fat. The proportion of exogenous
 
fatty acids in plasma that was present in non-203 

esterified form in the sum of pools NEFA+CMRF was calculated as: [
13

C-NEFA]plasma /  204 

([
13

C-NEFA]plasma + [
13

C-FACMRF]plasma ), where [
13

C-FACMRF]plasma is the plasma concentration 205 

of 
13

C-FA esterified in CMRF-TAG = [
13

C-FA]CMRF / ( [
13

C-FA]CMRF + [
12

C-FA]CMRF ) x 3 x 206 

[CMRF-TAG]plasma. 207 

 208 

Calculations of exogenous lipid oxidation from indirect calorimetry & breath tests  209 

Exogenous lipid oxidation was calculated according to Binnert et al. (18) from data of 210 

indirect calorimetry and breath tests. Here the formula was adapted to our use of 3 labeled 211 

triglycerides as follows:  212 

Exogenous lipid oxidation (% of ingested fat) = 213 

       

      
100

4.22

100/)(2/
2023022 








dARFCBA

COVtCOAPtCOAPtCOAP
 214 

 215 

With:  (A)=      2766.473/09.0100/0:8
13

CTGAP  216 

   (B)=      5130.810/30.0100/0:16
13

CTGAP  217 

  (C)=      5740.888/21.0100/1:18
13

CTGAP  218 

Where AP CO2 (t) is the AP value of the expired CO2 at time t, AP CO2 (t0) is the AP value of 219 

the expired CO2 at time t0, AP tracers is the calculated AP value of the labeled mixture of 220 

TAG (tracers) and 


V CO2 is the production rate of expired CO2 (indirect calorimetry). Mean 221 

molecular weights of trioctanoin, tripalmitin and triolein are 473.66 g/mol, 810.30 g/mol and 222 

888.40 g/mol, respectively. Mean number of carbons in trioctanoin, tripalmitin and triolein 223 

are 27, 51 and 57, respectively. dARF (Acetate Recovery Factor) is the correction factor for 224 
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incomplete recovery of 
13

C bicarbonate (0.505 for NW; 0.453 for obese (26)) and 22.4 is the 225 

molar volume (L) of CO2.  226 

 227 

Kinetic parameters 228 

We calculated the incremental area under curve (iAUC); maximum postprandial 229 

concentration, delta and diameter (Cmax, ∆max, dmax); time for appearance of these maximum 230 

parameters (tmax) and appearance/enlargement-rates between 0 and 60 min. 231 

 232 

Statistical analysis 233 

Each subject served as his own control. All data are presented as means ±SEM (n=9 per 234 

group) and were analyzed with Statview 5.0 software (Abacus Concept, Berkeley, CA). 235 

Postprandial data were compared by analysis of variance (ANOVA) for repeated measures 236 

followed by post-hoc test (Fisher PLSD) for statistical effects of (i) time alone (Ptime) over the 237 

first postprandial period (0-300min), (ii) meal alone (Pmeal) independently of the time in the 238 

postprandial period and (iii) interaction of both factors, time and meal (Ptimexmeal). Kinetic 239 

parameters were compared by two-way ANOVA followed by Fisher PLSD according to meal 240 

and BMI (Pmeal, PBMI, PmealxBMI) and time period before/after lunch (PmealxBMIxtime). Multiple 241 

comparisons regarding tracer excretion in feces were performed using ANOVA followed by 242 

Bonferroni post-hoc test. Comparisons between meals within subject groups were performed 243 

using a paired Student’s t-test and comparisons between subject groups within meals with an 244 

unpaired Student’s t-test. Differences were considered significant at the P< 0.05 level. 245 

 246 

RESULTS 247 

Properties of emulsion vs spread fat 248 

The emulsion droplet size (Table 3; Supplemental Figure 3) indicates the homogenization 249 

was effective in producing the emulsions. The emulsion had an approximately ~70000-fold 250 



 13 
 

greater surface area than the spread fat. To control for the possibility that the different 251 

metabolic effects could be attributed to the fat melting properties, we measured melting 252 

profiles and crystalline structures in all conditions (with or without tracers, emulsified or not, 253 

Supplemental Figure 4). According to these analyses, the test fat differed only by their 254 

structure (Table 3). 255 

 256 

Hunger feeling 257 

At the end of the first postprandial period (0-300 min) just before lunch, normal-weight 258 

subjects felt similarly hungry regardless of breakfast type (Supplemental figure 5). In contrast, 259 

obese subjects felt hungrier after emulsion than spread fat (P< 0.05; Supplemental figure 5). 260 

Of note, before breakfasts, all subjects felt equally hungry (not shown). 261 

 262 

Postprandial concentration profile and size of chylomicron-rich fraction 263 

Figure 1A-B shows that in both groups, CMRF-TAG rapidly increased (60 min) after 264 

ingestion of emulsified fat and peaked at 3-4 h (tmax in Table 4). The emulsion induced a 265 

significantly earlier and sharper increase in CMRF-TAG than the spread fat (Table 4: tmax and 266 

appearance-rate0-60min; P< 0.001). These differences were dramatically marked in the obese 267 

subjects, with a significant delay in absorption of the spread fat from 0 to 300 min compared 268 

to NW subjects (P< 0.01, Table 4). At the end of the test, CMRF-TAG of NW subjects 269 

returned to lower values regardless of fat structure. The obese subjects showed different 270 

profiles, with CMRF-TAG remaining elevated at the end of the spread fat test: e.g. at 480 271 

min, 0.61 ± 0.15 mmol/L for spread vs 0.27 ± 0.06 mmol/L for emulsion above fasting 272 

baseline (P< 0.05). These differences in profile before and after lunch according to obese state 273 

and meal type are supported by different BMI x meal x time interactions for the Δmax and 274 

iAUC of CMRF-TAG (Table 4). 275 
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Mean CMRF size sharply increased in both groups from the first hour after emulsion 276 

(Figure 1 C-D; Pmeal< 0.05 for enlargment-rate0-60min, Table 4). For NW subjects, CMRF 277 

diameters were similar for spread fat and emulsion all along the test. In obese subjects, CMRF 278 

diameters became equal for both meals at 300 min. We can note that in the period from 0 to 279 

240 min, CMRF diameter in obese subjects was higher after emulsion vs spread fat from 0 to 280 

240 min (Pmeal< 0.05 and Ptime< 0.001). Altogether, obese subjects presented larger CMRF 281 

than NW subjects (P< 0.01 for dmax 0-480 min, Table 4) with persistence of large CMRF after 282 

the second meal for spread fat. 283 

 284 

Plasma concentration profile of ApoB48 285 

Figure 1E-F shows that plasma ApoB48 changed over time in both groups after both 286 

breakfasts (Ptime< 0.0001) and differently according to the type of breakfast for NW subjects 287 

(Ptimexmeal=0.001). At 120 min, NW subjects accumulated more ApoB48 after consumption of 288 

emulsion than spread fat (7.08 ±0.86 mg/L for spread fat vs 9.73 ±0.69 mg/L for emulsion, P< 289 

0.05) and compared with obese subjects for emulsion (7.47 ±0.78 mg/L, P< 0.05). 290 

 291 

Plasma concentration profile of 
13

C-fatty acid tracers and fecal loss 292 

Figure 2A-B-C-D shows a change in plasma 
13

C-palmitic and 
13

C-oleic acids over time in 293 

both groups after both breakfasts (Ptime< 0.0001). 
13

C-palmitic acid appeared earlier and 294 

sharper in plasma when it was in emulsion, differences between breakfasts being greater for 295 

obese (Pmeal= 0.007). Plasma concentrations of 
13

C-oleic acid were higher during 5h of 296 

emulsion digestion, especially for obese subjects (Pmeal= 0.018 and Ptimexmeal= 0.0002). For 297 

both tracers, a second peak was observed at 360 min, after ingestion of the second meal. 298 

During the first 300 min for obese subjects, the iAUC for plasma 
13

C-FA were 299 

significantly higher after consumption of emulsion vs spread fat (P< 0.05, Figure 2B-D). 300 

iAUC after spread fat were lower for obese vs NW subjects (P< 0.05, Figure 2B-D).  301 
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Fecal excretion of 
13

C-palmitic acid was higher than that of 
13

C-oleic acid (Figure 2E). 302 

There was no effect of breakfast type on fecal excretion of 
13

C-palmitic acid or  
13

C-oleic acid 303 

in the two groups. 304 

 305 

Plasma concentration profile of insulin and NEFA and apparent dietary FA spillover 306 

Figure 3A-B-C-D shows a significant change in plasma insulin and NEFA over time after 307 

the two breakfasts in both groups (Ptime< 0.0001). Over the first 300 min, the NEFA profile 308 

indicated a meal type x time interaction in both groups, with the decrease in plasma NEFA at 309 

120 min being lower for emulsion than spread (Figure 3C-D). Therefore, we measured 
13

C 310 

enrichment in plasma NEFA at 120 minutes (Figure 3E) to estimate whether this would result 311 

from the contribution of exogenous FA, so-called apparent fatty acid ―spillover‖. We 312 

observed higher apparent ―spillover‖ during the postprandial phase of emulsion vs spread fat, 313 

in both groups (P< 0.05 for NW and P< 0.01 for obese subjects, Figure 3E). The contribution 314 

of exogenous FA to total NEFA in NW subjects was 42% for spread vs 79% for emulsion, 315 

and was lower in obese, 4% for spread vs 50% for emulsion (meal effect, P< 0.01; BMI 316 

effect, P< 0.01; no meal x BMI interaction). Moreover, in NW subjects, the proportion of 317 

exogenous FA being in non-esterified form in plasma at 120 min was 10.6 % for spread vs 318 

18.7 % for emulsion, i.e. 1.8-fold increase, and in obese 10.1 % for spread vs 15.0% for 319 

emulsion, i.e. 1.5-fold increase (P<0.05 for spread vs emulsion; no significant effect of BMI 320 

nor meal x BMI interaction). In the same time emulsification increased total plasma NEFA by 321 

2.2-fold in NW and by 1.6-fold in obese subjects (Figure 3C-D). Altogether, this means that 322 

more than 80 % of the increase of plasma NEFA due to emulsification may be explained by 323 

an increased amount of exogenous fatty acids being released non-esterified in plasma 324 

(spillover). 325 

 326 



 16 
 

Postprandial appearance of label in expired CO2 327 

The 
13

C appearance in expired CO2 represents the final product of FA -oxidation. A 328 

significant change in APE occurred over time in both groups (Ptime< 0.0001; Figure 4A-B). In 329 

both groups, APE was higher after consumption of emulsion vs spread fat over the first 300 330 

min, indicating improvement of dietary fat -oxidation using emulsified form. APE returned 331 

to baseline after 720 min. An effect of BMI was also observed with  higher appearance- 332 

rate0-60min in NW than obese subjects (P< 0.01; Table 4). 333 

Inserts in Figure 4A-B show that AUC of expired 
13

CO2 after 300 min for the emulsion 334 

was significantly higher than for spread fat in both groups (P< 0.01 for NW subjects and P< 335 

0.001 for obese subjects). Besides, over 0 to 720 min, obese subjects presented higher AUC 336 

of expired 
13

CO2 after consuming emulsion vs spread fat (P< 0.05, Figure 4B insert). 337 

Altogether, the structuring of fat in the meal significantly affected the kinetic parameters of 338 

13
CO2 air enrichment regardless of BMI while BMI affected AUC and appearance-rate 0-60min 339 

(Table 4). 340 

 341 

Exogenous lipid fate 342 

We studied the metabolic handling of exogenous lipids by evaluating the fractions of 343 

ingested lipids that have been either oxidized or lost in feces, and so estimated the remaining 344 

fraction stored in body pools. For the same quantity and composition of ingested fat, all 345 

subjects -oxidized FA better when fat was emulsified (Figure 4C). In turn, the calculated 346 

fraction of ingested lipids oriented towards storage in body pools was lower after emulsion vs 347 

spread consumption. After accounting for the part of exogenous lipids lost in feces (Figure 348 

4C), the percentage of exogenous lipid oxidation according to the fraction that has been 349 

intestinally absorbed was higher for NW and obese subjects after emulsion vs spread fat (P< 350 

0.05 and P< 0.01, respectively, Figure 4D). Total lipid oxidation was unchanged with the two 351 
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test meals in both groups but with a greater relative contribution of exogenous lipids ingested 352 

at breakfast as emulsion vs spread fat (Figure 4E). 353 

 354 

DISCUSSION 355 

Postprandial triglyceridemia is the first step in the metabolization of dietary lipids. 356 

Ingested FA are firstly present in plasma TAG in the form of intestinally secreted 357 

chylomicrons, which further lead to large remnants after hydrolysis by lipoprotein lipase (10, 358 

22). The next step concerns trafficking of FA towards β-oxidation or storage that is of utmost 359 

importance regarding the metabolic impact of these dietary FA. We therefore investigated 360 

whether structuring fat in the meal could modify postprandial lipid metabolism, from the 361 

amount and size of chylomicrons to -oxidation, including fecal loss. To this aim, labeled 362 

breakfasts containing either spread or emulsified fat were fed to NW and obese subjects. Test 363 

meals were designed to be of equal composition. Thus, factors like FA composition or protein 364 

content cannot be involved in the presently observed differences in lipid metabolism, which 365 

can be uniquely attributed to the fat physico-chemical structure in the meal. The postprandial 366 

chylomicron TAG profile after emulsion consumption differed from that of the spread fat, 367 

with the peak being more rapidly achieved, more pronounced and more quickly cleared, 368 

especially in obese subjects. This is consistent with reports of enhanced FA absorption when a 369 

simple bolus of vegetable oil was emulsified in humans (27) and rodents(14, 15, 28). One 370 

explanation is that our emulsion had ~70000-times greater surface area available for lipases 371 

than spread fat, which is reported to enhance lipolysis and absorption (29). Enteral emulsions 372 

of different droplet sizes, ~1 vs ~10 µm (14.5-fold difference in fat surface area), were shown 373 

to result in small differences only in postprandial lipemia in humans (17). The dramatic 374 

differences observed in the present work are due to the greatest differences in fat structure. Of 375 

note, postprandial lipid metabolization was previously found faster using unemulsified than 376 

emulsified milk fat in rats (14). Differences with the present results can be explained by (i) 377 
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rodent physiology of bile flow that is different from humans (30), and (ii) unemulsified 378 

melted milk fat being force-fed intragastrically, prior to the proteinaceous phase. This could 379 

have favored lipid emptying in the upper intestine and a rapid rise of plasma TAG in rats.  380 

Our study also provides a proof of concept that effects of fat structure in the meal can occur in 381 

a real mixed meal, while previous studies used oil or emulsion bolus fed orally or 382 

intragastrically (17, 29). Regarding emulsifier type, our fat was emulsified by the proteins 383 

naturally present in skim milk. Emulsions stabilized with caseins and monoacylglycerols were 384 

recently reported to result in lower postprandial plasma TAG than those formulated with 385 

lecithin in non-obese humans (31), which can be explained by lower in vitro digestive 386 

lipolysis (32). Because obese men were the most affected by emulsification, further work 387 

should test the effect of emulsifiers on postprandial lipid metabolism. The importance of 388 

sensory exposure to lipids on postprandial metabolism in humans was also recently revealed 389 

(5). Therefore, we cannot exclude a contribution of oral fat perception in our results.  390 

TAG-rich lipoproteins remaining elevated all along the postprandial phase are an 391 

independent CVD risk factor (3, 4), which can be mechanistically related to the atherogenic 392 

potential of small chylomicron remnants (21, 22). In this study, we collected CMRF fractions 393 

containing chylomicrons and their large remnants. The latter do not contribute significantly to 394 

the formation of small atherogenic remnants because of direct hepatic clearance (33). 395 

However, the role of TAG-rich particles is still debated, underlining that this is still an open 396 

field needing further studies (1, 2). In this context, our study shows for the first time in NW 397 

and obese men that postprandial lipemia profile can be modulated by structuring the fat in a 398 

mixed meal. Therefore, the study of atherogenic small particles in the postprandial phase after 399 

consumption of differently structured lipids in the meal should now be performed. 400 

Obese men presented a delayed increase of CMRF-TAG after spread fat. Overweight men 401 

were also reported to present delayed TAG-rich lipoprotein metabolism after a high-fat load 402 

(34). Our observed differences between the two breakfasts in obese men could be explained 403 
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by their lower pancreatic secretion and lower levels of gallbladder emptying compared with 404 

lean men (35). Therefore, obese subjects can better hydrolyze fat when it is pre-emulsified. 405 

Moreover, fine stable emulsions were reported to be emptied faster and to cause greater 406 

release of cholecystokinin than those that broke and layer in the stomach (36, 37). We can 407 

thus suggest that the fat absorption delay observed with spread fat can be due to layering in 408 

the stomach and thus delayed emptying. Of note, immediately after lunch, a peak of 
13

C-FA 409 

appeared in plasma. This so-called ―second-meal effect‖ is known as the contribution of lipids 410 

from a meal to lipemia after the next meal (38). For obese men, the marked delay in lipemia 411 

appearance after spread fat cumulated with the second meal effect, causing high lipemia until 412 

the test ended. In contrast, obese subjects (without fasting hyperlipidemia herein) did not have 413 

difficulties in absorbing the emulsion, with a final return of lipemia to baseline.  414 

In NW subjects, higher CMRF-TAG after the emulsion corresponded transiently to an 415 

increased number of particles, as shown by the similar CMRF-size with an increased ApoB48 416 

level at 120 min. In obese subjects however, ApoB48 levels remained similar, i.e., the 417 

increase in lipemia after emulsion was due to an increased CMRF size. High particle numbers 418 

estimated by ApoB48 level are reported to lead to increased chylomicron remnant numbers, 419 

hence potentially increased atherosclerotic risk (10, 21). It would now be useful to explore the 420 

chronic metabolic impact of fat structure, especially regarding ApoB48-containting particles. 421 

The few reports about metabolic effects of emulsions have solely studied lipemia or 422 

plasma FA concentrations as endpoints. For the first time to our knowledge, our study shows 423 

that fat emulsification further affects the metabolic handling of exogenous FA, including -424 

oxidation. Early appearance of 
13

CO2 was due to the rapid -oxidation of short-chain FA that 425 

are directly absorbed in the portal vein and oxidized by the liver (39). Obesity is associated 426 

with a defect in the -oxidation of dietary FA (18, 40-42). Hodson et al. recently challenged 427 

this idea by showing greater FA -oxidation in obese men and attributed this to specific FA 428 

acid partitioning (43). We highlight that exogenous FA oxidation can be enhanced in obese 429 
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men by emulsifying fat. Discrepancies between reports can thus be explained by the present 430 

―fast vs slow lipid‖ notion. Indeed, lower -oxidation in obese vs lean subjects was observed 431 

using a single oil bolus (18) whereas higher -oxidation in obese was observed when the 432 

tracer was dispersed into an emulsion (43). This aspect had not been taken into account by 433 

previous authors. Moreover, emulsification is now advised to enhance the intestinal 434 

absorption of essential fatty acids (27). However, our results highlight the risk that such 435 

essential FA quickly absorbed can be lost in the -oxidation process rather than being 436 

bioavailable for cell membrane turnover. Therefore, further studies on the structuring of oils 437 

rich in essential PUFA should now investigate their final postprandial metabolic fate. 438 

The effect of emulsification on exogenous lipid oxidation cannot be due to differences in 439 

intestinal absorption because of similar fecal excretion. Total lipid oxidation during the test 440 

day was unchanged by fat structuring, as well as total energy expenditure and diet-induced 441 

thermogenesis. However, the source of -oxidized FA was different: using emulsion, 442 

exogenous FA ingested at breakfast were shunted towards -oxidation pathways. Using 443 

spread fat, more endogenous FA and/or exogenous FA ingested at lunch were oxidized so that 444 

exogenous FA ingested at breakfast were more oriented towards storage. Therefore, 445 

regardless of energy balance, FA metabolism is changed by lipid structure. This is consistent 446 

with the greater FA spillover after emulsion. It can be explained by the faster intestinal 447 

absorption, resulting in enhanced lipolysis of chylomicrons that generates exogenous NEFA 448 

(44). Their early influx can serve as fuel for tissues and explain their higher contribution to 449 

total FA oxidation with emulsion. However, high NEFA can also constitute a risk for ectopic 450 

fat accumulation (44). Another aspect in obesity research concerns energy balance and satiety 451 

regulation (45, 46). Just before lunch, our obese subjects felt hungrier after emulsion than 452 

spread fat (visual analog scales, Supplemental figure 5). Further trials could test the impact of 453 

fat structuring at breakfast on satiety regulation at lunch and energy balance. 454 
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In summary, we demonstrate that the postprandial metabolic handling of dietary FA can be 455 

significantly modified by emulsifying the fat in the meal, especially in obese subjects. The 456 

clinical perspectives of this first study should thus not be underrated. This study supports the 457 

further exploration of a possible dietary concept of ―fast vs slow lipid‖ for the nutritional 458 

management of metabolic diseases through food formulation. Our results in the postprandial 459 

phase raise the questions of whether (i) daily ingestion of ―fast vs slow fat‖ would result in 460 

different lipid metabolisms, adiposity and/or cardiovascular risk markers in the long term and 461 

(ii) the composition and structuring of dietary lipids could be optimized to this aim. 462 
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Table 1. Anthropometric and fasting metabolic subject parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data are means ± SEM. Groups are compared using unpaired Student’s t-test. 

 Normal weight 

(n=9) 

Obese 

(n=9) 

P value 

Anthropometric parameters    

Age (years) 28.3 ± 1.4 30.2 ± 2.2 ns 

Body weight (kg) 72.0 ± 2.1  101.2 ± 1.9 < 0.0001 

BMI (kg.m
-
²) 22.3 ± 0.5 31.7 ± 0.3 < 0.0001 

Waist circumference (cm) 83.3 ± 1.6 105.9 ± 0.8 < 0.0001 

    

Fasting metabolic parameters    

Glucose (mM) 4.94 ± 0.16 5.19 ± 0.15 ns 

Insulin (mIU/L) 3.75 ± 0.59 7.14 ± 0.95 0.008 

HOMA 0.85 ± 0.14 1.69 ± 0.25 0.009 

Total cholesterol (mM) 4.85 ± 0.22 4.89 ± 0.24 ns 

HDL cholesterol (mM) 1.51 ± 0.10 1.09 ± 0.06 0.004 

LDL cholesterol (mM) 3.03 ± 0.27 3.11 ± 0.21 ns 

Triacylglycerols (mM) 0.85 ± 0.06 1.39 ± 0.18 0.017 
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Table 2. Nutritional composition of the test breakfasts containing either spread or emulsified 

fat enriched with 
13

C-labelled triglycerides. 

1
 Identical nutrient composition for both spread and emulsion breakfasts. 

2
 Fatty acid profile of TAG includes 68.6% SFA, 28.1% MUFA and 3.3% PUFA. 

3
 Natural vanillia-flavoured. 

Breakfast composition
1
 

 Quantity      

(g or mL) 

Carbohydrates 

(g) 

Proteins      

(g) 

Lipids        

(g) 

Anhydrous Milk Fat
2
 40 - - 40 

Skimmed milk
3
 160 7.5 5.3 0.3 

Bread 50 28 4 0.5 

[1,1,1-
13

C3] trioctanoin 0.09 - - 0.09 

[1,1,1-
13

C3] tripalmitin 0.30 - - 0.30 

[1,1,1-
13

C3] triolein 0.21 - - 0.21 

Total (g) 250.6 35.5 9.3 41.4 

% caloric intake  26 7 67 
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Table 3. Physico-chemical properties of fat used in the formulation of test breakfasts. 

1 
Mixture of milk fat + 

13
C-TAG tracers. 

2 
Diameter of the peak of maximum intensity measured by DLS. 

3 
Surface averaged diameter measured by LLS. 

4 
For Spread fat: calculated as the surface of an equivalent sphere of 40 g. For Emulsion: calculated 

from the specific surface area (m
2 
per g fat) calculated by the software, further multiplied by fat 

content in the meal. 

5 
Temperature at which the entire fat amount is in liquid form. 

 

Fat properties1 

Structure 

(type of breakfast) 

Droplet size2 

(µm) 

d32
3 

(µm) 

Fat surface 

area in meal4 

(m
2
) 

Melting 

temperature
5
 

(°C) 

Spread - - 0.006 42 

Emulsion 1.04 0.63 410 40 
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Table 4. Kinetic parameters after digestion of test breakfasts in NW vs obese subjects.  

Parameter Spread fat 40 g Emulsified fat 40 g  P value 

∆ CMRF TAG Normal-weight Obese Normal-

weight 

Obese Pmeal
1
 PBMI

1
 Pmealx 

BMI
1
 

Pmealx 

BMIxtime 
2
 

0-480 min: 

∆max (mmol/L) 

iAUC (mmol·min/L) 

tmax (min) 

Appearance-rate0-60 min 

(µmol/L/min) 

 

0.63 ± 0.13 

132.8 ± 29.1 

293 ± 23 

0.32 ± 0.27 

 

0.80 ± 0.12 

165.6 ± 23.1 

367 ± 33 

0.14 ± 0.32 

 

0.75 ± 0.09 

180.4 ± 28.2 

220 ± 42 

2.85 ± 0.72 

 

0.94 ± 0.25 

218.1 ± 53.2 

207 ± 25 

2.93 ± 0.6 

 

ns 

ns 

< 0.001 

<0.0001 

 

ns 

ns 

ns 

ns 

 

ns 

ns 

ns 

ns 

 

0-300 min: 

∆max (mmol/L) 

iAUC (mmol·min/L) 

tmax (min) 

 

0.56 ± 0.10 

81.4 ± 18.2 

233 ± 16 

 

0.53 ± 0.09 

57.6 ± 10.7 

267 ± 15 

 

0.74 ± 0.09 

127.7 ± 17.4 

167 ± 17 

 

0.94 ± 0.25 

159.3 ± 39.6 

193 ± 17 

 

0.05 

ns 

<0.0001 

 

ns 

< 0.01 

< 0.1 

 

ns 

ns 

ns 

 

300-480 min: 

∆max (mmol/L) 

iAUC (mmol·min/L) 

tmax (min) 

 

0.54 ± 0.13 

51.4 ± 12.9 

347 ± 5 

 

0.80 ± 0.12 

107.9 ± 17.7 

390 ± 23 

 

0.54 ± 0.11 

52.7 ± 11.2 

397 ± 19 

 

0.56 ± 0.14 

58.8 ± 14.7 

420 ± 24 

 

ns 

< 0.05 

< 0.05 

 

ns 

ns 

< 0.1 

 

ns 

ns 

ns 

 

< 0.05 

< 0.01 

< 0.1  

CMRF Size         

0-480 min: 

dmax (nm) 

tmax (min) 

Enlargement-rate0-60min 

(µmol/L/min) 

 

253 ± 34 

243 ± 25 

-0.06 ± 0.07 

 

494 ± 93 

307 ± 23 

-0.02 ± 0.11 

 

262 ± 20 

207 ± 30 

0.65 ± 0.11 

 

344 ± 58 

237 ± 33 

1.26 ± 0.78 

 

ns 

< 0.1 

< 0.05 

 

< 0.01 

0.1 

ns 

 

ns 

ns 

ns 

 

0-300 min: 

dmax (nm) 

tmax (min) 

 

246 ± 35 

180 ± 17 

 

296 ± 70 

200 ± 41 

 

239 ± 12 

200 ± 26 

 

336 ± 58 

193 ± 28 

 

ns 

ns 

 

< 0.1 

ns 

 

ns 

ns 

 

300-480 min: 

dmax (nm) 

tmax (min) 

 

195 ± 10 

337 ± 4 

 

451 ± 96 

367 ± 17 

 

207 ± 28 

340 ± 5 

 

236 ± 46 

360 ± 16 

 

< 0.1 

ns 

 

< 0.05 

< 0.05 

 

< 0.05 

ns 

 

0.055 

ns 
13

CO2 enrichment          

0-720 min: 

Cmax (%) 

AUC (%.min) 

tmax (min) 

Appearance-rate0-60 min 

(%/min) 

 

0.019 ± 0.001 

6.9 ± 0.5 

310 ± 21 

6.0 .10
-5

  

±1.7 .10
-5

 

 

0.013 ± 0.001 

4.8 ± 0.8 

347 ± 23 

2.0 .10
-5

  

± 0.5 .10
-5

 

 

0.019 ± 0.001 

7.7 ± 0.2 

267 ± 26 

13.6 .10
-5

  

± 1.9 .10
-5

 

 

0.016 ± 0.001 

6.4 ± 0.5 

267 ± 17 

9.8 .10
-5

  

± 0.8 .10
-5

 

 

< 0.01 

< 0.01 

< 0.01 

< 0.0001 

 

ns 

< 0.001 

ns 

< 0.01 

 

ns 

ns 

ns 

ns 

 

 

0-300 min: 

Cmax (mmol/L) 

AUC (%.min) 

tmax (min) 

 

0.018 ± 0.001 

2.9 ± 0.3 

283 ± 17 

 

0.011 ± 0.001 

1.6 ± 0.4 

293 ± 7 

 

0.019 ± 0.001 

3.9 ± 0.2 

257 ± 23 

 

0.016 ± 0.001 

3.2 ± 0.2 

260 ± 14 

 

< 0.05 

< 0.0001 

< 0.1 

 

< 0.0001 

< 0.0001 

ns 

 

< 0.05 

ns 

ns 

 

300-720 min: 

Cmax (mmol/L) 

AUC (%.min) 

tmax (min) 

 

0.019 ± 0.001 

3.9 ± 0.4 

333 ± 3 

 

0.013 ± 0.001 

3.2 ± 0.5 

360 ± 18 

 

0.017 ± 0.001 

3.8 ± 0.3 

330 ± 0 

 

0.016 ± 0.001 

3.1 ± 0.4 

330 ± 0 

 

ns 

ns 

< 0.1 

 

0.0001 

< 0.1 

ns 

 

< 0.05 

ns 

ns 

 

ns 

ns 

ns 

Data are means ± SEM, n=9 per group. Parameters calculated over the indicated time period: Cmax indicates maximum 

concentration; dmax indicates maximum diameter; ∆max indicates maximum concentration delta; iAUC, incremental area under the 

curve; AUC, area under the curve. P values (Pmeal, PBMI and PmealxBMI) obtained by ANOVA followed by post hoc Fisher PLSD. 
1
 P values of two-way ANOVA for meal and BMI effects and their interactions. 

2
 P values of two-way ANOVA for repeated measures regarding both time periods (before and after 300 min), for meal x BMI x 

time period interactions. 
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Figure Caption 

 

 

 

 

Figure 1. Postprandial profile after consuming spread fat (□, ) or emulsion (○, ): CMRF-

TAG (mM) in NW (A) and obese subjects (B) and corresponding iAUC; CMRF size (nm) in 

NW (C) and obese subjects (D); ApoB48 (mg/L) in NW (E) and obese subjects (F).  Data are 

means ±SEM, n=9 per group; Ptime, Pmeal and Ptimexmeal for postprandial period from 0 to 300 

min (repeated measures-ANOVA followed by post-hoc Fisher PLSD). 

(B) ** P< 0.01 for time 420 min emulsion vs spread fat (paired Student’s t-test); *P< 0.05 for 

emulsion vs spread fat at time 480 min and for iAUC0-300 (paired Student’s t-test); 
§
 P< 0.05 

for obese vs NW regarding spread fat iAUC300-480 (unpaired Student’s t-test). 

(D) *P< 0.05 for time 120 min emulsion vs spread fat (paired Student’s t-test) 

(C-D) 
§§

 P< 0.01 for time 120 min obese vs NW subjects (unpaired Student’s t-test);   

(E-F) * P< 0.05 for time 120 min emulsion vs spread fat (paired Student’s t-test), 
§
 P< 0.05 

for time 120 min obese vs NW subjects (unpaired Student’s t-test).    

 

 

 

Figure 2. Postprandial concentration profile and iAUC of total plasma lipids of 
13

C-palmitic 

acid (mM) and 
13

C-oleic acid (mM) in NW (A & C, respectively) and obese subjects (B & D, 

respectively) consuming spread fat (□, ) or emulsion (○, ). (E) Fecal excretion of 
13

C- 

palmitic acid and 
13

C-oleic acid in NW (white bars) and obese subjects (black bars) 

consuming spread fat (plain bars) or emulsion (droplet pattern bars). 

Data are means ±SEM, n=9 per group. 
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(A-B-C-D) Ptime, Pmeal and Ptimexmeal for postprandial period from 0 to 300 min (repeated 

measures-ANOVA followed by post-hoc Fisher PLSD).  

(A-B) *P< 0.05 for obese iAUC 0-300 min emulsion vs spread fat (paired Student’s t-test),  

§
 P< 0.05 for spread fat iAUC 0-300 min obese vs NW subjects (unpaired Student’s t-test), 

$
P< 0.1 for obese iAUC 0-480 min emulsion vs spread fat (paired Student’s t-test); (C-D)  

*P< 0.05 for obese iAUC 0-300 min emulsion vs spread fat (paired Student’s t-test), 
§
 P< 0.05 

for spread fat iAUC 0-300 min obese vs NW subjects (unpaired Student’s t-test); (E) no 

common letter with another bar indicates a statistical difference, P< 0.001 (ANOVA followed 

by post-hoc Bonferroni). 

 

 

 

Figure 3. Postprandial concentration profile of insulin (mUI/L) and NEFA (µM) in NW (A & 

C, respectively) and obese subjects (B & D, respectively) consuming spread fat (□, ) or 

emulsion (○, ). (E) 
13

C-enrichment of plasma NEFA at 120 min, estimating so-called 

apparent fatty acid ―spillover‖ in NW (white bars) and obese subjects (black bars) consuming 

spread fat (plain bars) or emulsion (droplet pattern bars).  

Data are means ±SEM, n=9 per group; Ptime, Pmeal and Ptimexmeal for postprandial period from 0 

to 300 min (repeated measures-ANOVA followed by post-hoc Fisher PLSD). 

(C) **P< 0.01 for NW subjects at 120 min emulsion vs spread fat (paired Student’s t-test); 

(D) *P< 0.05 for obese subjects at 120 min emulsion vs spread fat (paired Student’s t-test); 

(E) *P< 0.05 for NW subjects at 120 min emulsion vs spread fat (paired Student’s t-test);  

**P< 0.01 for obese subjects at 120 min emulsion vs spread fat (paired Student’s t-test); 

ANOVA analysis revealed meal effect (P<0.01) and BMI effect (P<0.01) but no significant 

meal x BMI interaction. 
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Figure 4. Postprandial profile of 
13

C-appearance in breath in NW subjects (A) and obese 

subjects (B) consuming spread fat (□, ) or emulsion (○, ); (C) Exogenous lipid fate, 

either oxidized (white), lost in feces (black) or stored (grey, calculated as ―total – 

(lost+oxidized)‖) in NW and obese subjects over 480 min; (D) Oxidation of intestinally 

absorbed lipids over 480 min in NW (white bars) and obese subjects (black bars) consuming 

spread fat (plain bars) or emulsion (droplet pattern bars); (E) Total lipid oxidation (total bar) 

and fraction of cumulative exogenous lipid oxidation (dashed part) over 480 min after 

consuming test breakfasts in NW vs obese subjects. 

Data are means ±SEM, n=9 per group. 

(C-D-E) * P< 0.05 for NW subjects and ** P< 0.01 for obese subjects emulsion vs spread fat 

(paired Student’s t-test). ANOVA analysis revealed no significant meal x BMI interaction 

(P=0.087). 


