J. Tatum, G. Kelloff, R. Gillies, J. Arbeit, J. Brown et al., Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy, International Journal of Radiation Biology, vol.3, issue.1, pp.699-757, 2006.
DOI : 10.1002/1097-0142(20000601)88:11<2606::AID-CNCR25>3.0.CO;2-W

S. Ogawa, T. Lee, A. Kay, and D. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation., Proceedings of the National Academy of Sciences, vol.87, issue.24, pp.9868-9872, 1990.
DOI : 10.1073/pnas.87.24.9868

R. Alonzi, A. Padhani, R. Maxwell, N. Taylor, J. Stirling et al., Carbogen breathing increases prostate cancer oxygenation: a translational MRI study in murine xenografts and humans, British Journal of Cancer, vol.79, issue.4, pp.644-648, 2009.
DOI : 10.1038/sj.bjc.6604903

C. Baudelet and B. Gallez, How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors?, Magnetic Resonance in Medicine, vol.12, issue.6, pp.980-986, 2002.
DOI : 10.1002/mrm.10318

S. Robinson, D. Collingridge, F. Howe, L. Rodrigues, D. Chaplin et al., Tumour response to hypercapnia and hyperoxia monitored by FLOOD magnetic resonance imaging, NMR in Biomedicine, vol.41, issue.2, pp.98-106, 1999.
DOI : 10.1002/(SICI)1099-1492(199904)12:2<98::AID-NBM556>3.0.CO;2-I

A. Padhani, Science to Practice: What Does MR Oxygenation Imaging Tell Us about Human Breast Cancer Hypoxia?, Radiology, vol.254, issue.1, pp.1-3, 2010.
DOI : 10.1148/radiol.091669

L. Mcphail and S. Robinson, Intrinsic Susceptibility MR Imaging of Chemically Induced Rat Mammary Tumors: Relationship to Histologic Assessment of Hypoxia and Fibrosis, Radiology, vol.254, issue.1, pp.110-118, 2010.
DOI : 10.1148/radiol.2541090395

P. Hoskin, D. Carnell, N. Taylor, R. Smith, J. Stirling et al., Hypoxia in Prostate Cancer: Correlation of BOLD-MRI With Pimonidazole Immunohistochemistry???Initial Observations, International Journal of Radiation Oncology*Biology*Physics, vol.68, issue.4, pp.1065-1071, 2007.
DOI : 10.1016/j.ijrobp.2007.01.018

S. Chopra, W. Foltz, M. Milosevic, A. Toi, R. Bristow et al., Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: A pilot study in men with prostate cancer, International Journal of Radiation Biology, vol.39, issue.9, pp.805-813, 2009.
DOI : 10.1016/S0090-4295(98)00500-7

H. An and W. Lin, Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging, Journal of Cerebral Blood Flow & Metabolism, vol.61, pp.1225-1236, 2000.
DOI : 10.1097/00004647-200008000-00008

D. Yablonskiy, Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom study, Magnetic Resonance in Medicine, vol.1, issue.3, pp.417-428, 1998.
DOI : 10.1002/mrm.1910390312

X. He and D. Yablonskiy, Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state, Magnetic Resonance in Medicine, vol.48, issue.1, pp.115-126, 2007.
DOI : 10.1002/mrm.21108

T. Christen, B. Lemasson, N. Pannetier, R. Farion, C. Segebarth et al., Evaluation of a quantitative blood oxygenation leveldependent (qBOLD) approach to map local blood oxygen saturation [Internet], NMR Biomed, vol.24, pp.393-403, 2011.

H. An, Q. Liu, Y. Chen, and W. Lin, Evaluation of MR-Derived Cerebral Oxygen Metabolic Index in Experimental Hyperoxic Hypercapnia, Hypoxia, and Ischemia, Stroke, vol.40, issue.6, pp.2165-2172, 2009.
DOI : 10.1161/STROKEAHA.108.540864

X. He, M. Zhu, and D. Yablonskiy, Validation of oxygen extraction fraction measurement by qBOLD technique, Magnetic Resonance in Medicine, vol.4, issue.4, pp.882-888, 2008.
DOI : 10.1002/mrm.21719

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth et al., study, NMR in Biomedicine, vol.90, issue.3, pp.1043-1056, 2008.
DOI : 10.1002/nbm.1278

URL : https://hal.archives-ouvertes.fr/inserm-00861168

D. Yablonskiy and E. Haacke, Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime, Magnetic Resonance in Medicine, vol.7, issue.6, pp.749-763, 1994.
DOI : 10.1002/mrm.1910320610

L. Risser, F. Plouraboue, A. Steyer, P. Cloetens, L. Duc et al., From Homogeneous to Fractal Normal and Tumorous Microvascular Networks in the Brain, Journal of Cerebral Blood Flow & Metabolism, vol.93, issue.2, pp.293-303, 2006.
DOI : 10.1126/science.272.5261.551

URL : https://hal.archives-ouvertes.fr/hal-00135600

L. Klassen and R. Menon, NMR Simulation Analysis of Statistical Effects on Quantifying Cerebrovascular Parameters, Biophysical Journal, vol.92, issue.3, pp.1014-1021, 2007.
DOI : 10.1529/biophysj.106.087965

J. Marques and R. Bowtell, Using forward calculations of the magnetic field perturbation due to a realistic vascular model to explore the BOLD effect, NMR in Biomedicine, vol.208, issue.6, pp.553-565, 2008.
DOI : 10.1002/nbm.1224

I. Troprès, S. Grimault, A. Vaeth, E. Grillon, C. Julien et al., Vessel size imaging, Magnetic Resonance in Medicine, vol.45, issue.3, pp.397-408, 2001.
DOI : 10.1002/1522-2594(200103)45:3<397::AID-MRM1052>3.3.CO;2-V

M. Silvennoinen, C. Clingman, X. Golay, R. Kauppinen, and P. Van-zijl, Comparison of the dependence of bloodR2 andR2* on oxygen saturation at 1.5 and 4.7 Tesla, Magnetic Resonance in Medicine, vol.43, issue.1, pp.47-60, 2003.
DOI : 10.1002/mrm.10355

J. Zhao, C. Clingman, M. Närväinen, R. Kauppinen, and P. Van-zijl, Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T, Magnetic Resonance in Medicine, vol.41, issue.3, pp.592-597, 2007.
DOI : 10.1002/mrm.21342

W. Spees, D. Yablonskiy, M. Oswood, and J. Ackerman, Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility,T1,T2,T*2, and non-Lorentzian signal behavior, Magnetic Resonance in Medicine, vol.39, issue.4, pp.533-542, 2001.
DOI : 10.1002/mrm.1072

P. Vérant, R. Serduc, B. Van-der-sanden, C. Rémy, and J. Vial, A Direct Method for Measuring Mouse Capillary Cortical Blood Volume Using Multiphoton Laser Scanning Microscopy, Journal of Cerebral Blood Flow & Metabolism, vol.36, issue.5, pp.1072-1081, 2007.
DOI : 10.1371/journal.pbio.0040022

R. Serduc, P. Vérant, J. Vial, R. Farion, L. Rocas et al., In vivo two-photon microscopy study of short-term effects of microbeam irradiation on normal mouse brain microvasculature, International Journal of Radiation Oncology*Biology*Physics, vol.64, issue.5, pp.1519-1527, 2006.
DOI : 10.1016/j.ijrobp.2005.11.047

URL : https://hal.archives-ouvertes.fr/inserm-00388979

R. Salomir, B. De-senneville, and C. Moonen, A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility, Concepts in Magnetic Resonance, vol.23, issue.1, pp.26-34, 2003.
DOI : 10.1002/cmr.b.10083

URL : https://hal.archives-ouvertes.fr/hal-00307981

J. Marques and R. Bowtell, Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility, Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, vol.65, issue.1, pp.65-78, 2005.
DOI : 10.1002/cmr.b.20034

K. Koch, X. Papademetris, D. Rothman, and R. De-graaf, magnetic resonance, Physics in Medicine and Biology, vol.51, issue.24, pp.6381-6402, 2006.
DOI : 10.1088/0031-9155/51/24/007

URL : https://hal.archives-ouvertes.fr/hal-01403222

P. Bandettini and E. Wong, Effects of biophysical and physiologic parameters on brain activation-inducedR2* andR2 changes: Simulations using a deterministic diffusion model, International Journal of Imaging Systems and Technology, vol.7, issue.2-3, pp.133-152, 1995.
DOI : 10.1002/ima.1850060203

E. Hahn, Spin Echoes, Physical Review, vol.80, issue.4, pp.580-594, 1950.
DOI : 10.1103/PhysRev.80.580

J. Boxerman, L. Hamberg, B. Rosen, and R. Weisskoff, Mr contrast due to intravascular magnetic susceptibility perturbations, Magnetic Resonance in Medicine, vol.34, issue.4, pp.555-566, 1995.
DOI : 10.1002/mrm.1910340412

H. An and W. Lin, Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging, Magnetic Resonance in Medicine, vol.45, issue.4, pp.583-588, 2002.
DOI : 10.1002/mrm.10257

F. Lauwers, F. Cassot, V. Lauwers-cances, P. Puwanarajah, and H. Duvernoy, Morphometry of the human cerebral cortex microcirculation: General characteristics and space-related profiles, NeuroImage, vol.39, issue.3, pp.936-948, 2008.
DOI : 10.1016/j.neuroimage.2007.09.024

M. Sharan and A. Popel, A Compartmental Model for Oxygen Transport in Brain Microcirculation in the Presence of Blood Substitutes, Journal of Theoretical Biology, vol.216, issue.4, pp.479-500, 2002.
DOI : 10.1006/jtbi.2002.3001

H. An and W. Lin, Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach, Magnetic Resonance in Medicine, vol.46, issue.4, pp.708-716, 2003.
DOI : 10.1002/mrm.10576

V. Kiselev and S. Posse, Analytical model of susceptibility-induced MR signal dephasing: Effect of diffusion in a microvascular network, Magnetic Resonance in Medicine, vol.81, issue.3, pp.499-509, 1999.
DOI : 10.1002/(SICI)1522-2594(199903)41:3<499::AID-MRM12>3.0.CO;2-O

P. Seevinck, J. Seppenwoolde, J. Zwanenburg, J. Nijsen, and C. Bakker, 2*-based quantification of holmium-loaded microspheres: Theory and experiment, Magnetic Resonance in Medicine, vol.54, issue.6, pp.1466-1476, 2008.
DOI : 10.1002/mrm.21785

A. Frøhlich, L. Østergaard, and V. Kiselev, Theory of susceptibility-induced transverse relaxation in the capillary network in the diffusion narrowing regime, Magnetic Resonance in Medicine, vol.54, issue.3, pp.564-573, 2005.
DOI : 10.1002/mrm.20394

N. Fujita, M. Shinohara, H. Tanaka, K. Yutani, H. Nakamura et al., Quantitative mapping of cerebral deoxyhemoglobin content using MR imaging, NeuroImage, vol.20, issue.4, pp.2071-2083, 2003.
DOI : 10.1016/j.neuroimage.2003.06.002

J. Lee, K. Shmueli, M. Fukunaga, P. Van-gelderen, H. Merkle et al., Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure, Proceedings of the National Academy of Sciences, vol.107, issue.11, pp.5130-5135, 2010.
DOI : 10.1073/pnas.0910222107