M. Toner, D. K. Irimia-]-b, and . Rack, Annual review of biomedical engineering Use of circulating tumor cells (CTC) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy to predict risk for relapse: The SUCCESS trial. -ASCO Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer, ASCO conference, pp.77-103, 2005.

J. Pierga, Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial Clinical cancer research : an official journal of the, pp.7004-7014, 2008.

M. Cristofanilli, Circulating tumor cells, disease progression, and survival in metastatic breast cancer Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer, The New England journal of medicine Journal of clinical oncology : official journal of the American Society of Clinical Oncology, vol.351, issue.26 19, pp.781-91, 2004.

H. I. Scher, Circulating Tumor Cell Number as a Prognostic Marker in Progressive Castration-Resistant Prostate Cancer: Use in Clinical Practice and Clinical Trials Detection, clinical relevance and specific biological properties of disseminating tumour cells, Detection of Mutations in EGFR in Circulating Lung-Cancer Cells, pp.233-239, 2008.

J. Den-toonder, A. Van-de-stolpe, K. Pantel, S. Sleijfer, L. W. Terstappen et al., Circulating tumor cells: the Grand Challenge Circulating Tumor Cell Isolation and Diagnostics: Toward Routine Clinical Use Cancer research, pp.375-382, 2011.

C. For, D. , and R. Health, Overview of Device Regulation, Center for Devices and Radiological Health

F. Bertolini, Y. Shaked, P. Mancuso, and R. S. , The multifaceted circulating endothelial cell in cancer: towards marker and target identification, Nature Reviews Cancer, vol.8, issue.11, pp.835-880, 2006.
DOI : 10.1038/nature04186

M. H. Strijbos, J. W. Gratama, J. Kraan, C. H. Lamers, M. Den-bakker et al., Circulating endothelial cells in oncology: pitfalls and promises, British Journal of Cancer, vol.63, issue.11, pp.1731-1736, 2008.
DOI : 10.1056/NEJMoa021491

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410112

D. Malka, Clinical value of circulating endothelial cell levels in metastatic colorectal cancer patients treated with first-line chemotherapy and bevacizumab Annals of oncology : official journal of the European Society for Medical Oncology, 2011.

F. Bidard, Clinical value of circulating endothelial cells and circulating tumor cells in metastatic breast cancer patients treated first line with bevacizumab and chemotherapy Annals of oncology : official journal of the European Society for Medical Oncology, pp.1765-71, 2010.

M. H. Strijbos, Circulating endothelial cells, circulating tumour cells, tissue factor, endothelin-1 and overall survival in prostate cancer patients treated with docetaxel, European Journal of Cancer, vol.46, issue.11, pp.2027-2062, 1990.
DOI : 10.1016/j.ejca.2010.03.030

P. Mancuso and F. Bertolini, Circulating endothelial cells as biomarkers in clinical oncology, Microvascular research, pp.224-232, 2010.
DOI : 10.1016/j.mvr.2010.02.007

N. Jacques, Quantification of circulating mature endothelial cells using a whole blood four-color flow cytometric assay, Journal of Immunological Methods, vol.337, issue.2, pp.132-175, 2008.
DOI : 10.1016/j.jim.2008.07.006

M. Taylor, High levels of circulating VEGFR2+ Bone marrow-derived progenitor cells correlate with metastatic disease in patients with pediatric solid malignancies Clinical cancer research : an official journal of the American Association for, Cancer Research, vol.15, issue.14, pp.4561-71, 2009.

]. J. Walknowska, F. A. Conte, and M. M. Grumbach, PRACTICAL AND THEORETICAL IMPLICATIONS OF FETAL/MATERNAL LYMPHOCYTE TRANSFER, The Lancet, vol.293, issue.7606, pp.1119-1141, 1969.
DOI : 10.1016/S0140-6736(69)91642-0

S. S. Ho, K. O. Donoghue, and M. Choolani, Fetal cells in maternal blood: state of the art for non-invasive prenatal diagnosis, Annals of the Academy of Medicine, Singapore, vol.3223, issue.604, pp.597-603, 2003.

D. Gänshirt, Enrichment of Fetal Nucleated Red Blood Cells from the Maternal Circulation for Prenatal Diagnosis: Experiences with Triple Density Gradient and MACS Based on More than 600 Cases, Fetal Diagnosis and Therapy, vol.13, issue.5, pp.276-86
DOI : 10.1159/000020854

G. Vona, A. Sabile, M. Louha, and V. Sitruk, Isolation by Size of Epithelial Tumor Cells, The American Journal of Pathology, vol.156, issue.1, pp.57-63, 2000.
DOI : 10.1016/S0002-9440(10)64706-2

P. B. Noble and J. H. Cutts, Separation of blood leukocytes by Ficoll gradient The Canadian veterinary journal, La revue vétérinaire canadienne, pp.110-111, 1967.

J. Pierga, C. Nos, A. Vincent-salomon, B. Sigal-,, J. Thiery et al., Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients: clinical relevance Detection and characterization of putative metastatic precursor cells in cancer patients, Breast Cancer Res Clinical chemistry, vol.6, issue.53 3, pp.556-569, 2004.

P. J. Crosland-taylor, A Device for Counting Small Particles suspended in a Fluid through a Tube, Nature, vol.171, issue.4340, pp.37-45, 1953.
DOI : 10.1038/171037b0

M. J. Fulwyler, Electronic Separation of Biological Cells by Volume, Science, vol.150, issue.3698, pp.910-911, 1965.
DOI : 10.1126/science.150.3698.910

]. R. Molday, S. Yen, and A. Rembaum, Application of magnetic microspheres in labelling and separation of cells, Nature, vol.31, issue.5619, pp.437-438, 1977.
DOI : 10.1038/268437a0

]. S. Miltenyi, W. Müller, W. Weichel, and A. Radbruch, High gradient magnetic cell separation with MACS, Cytometry, vol.42, issue.2, pp.231-239, 1990.
DOI : 10.1002/cyto.990110203

V. M. Martin, Immunomagnetic enrichment of disseminated epithelial tumor cells from peripheral blood by MACS, Experimental hematology, vol.26, issue.3, pp.252-64, 1998.

A. H. Talasaz, Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device, Proceedings of the National Academy of Sciences of the United States of America, pp.3970-3975, 2009.
DOI : 10.1073/pnas.0813188106

K. Pantel and C. Alix-panabières, Circulating tumour cells in cancer patients: challenges and perspectives, Trends in Molecular Medicine, vol.16, issue.9, pp.398-406, 2010.
DOI : 10.1016/j.molmed.2010.07.001

D. R. Gossett, Label-free cell separation and sorting in microfluidic systems, Analytical and Bioanalytical Chemistry, vol.7, issue.8, pp.3249-3267, 2010.
DOI : 10.1007/s00216-010-3721-9

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911537

]. S. Yang, A. Undar, and J. D. Zahn, A microfluidic device for continuous, real time blood plasma separation, Lab Chip, vol.3, issue.2, pp.871-80, 2006.
DOI : 10.1039/B516401J

M. Seki, Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics, pp.1233-1242, 2005.

M. Yamada, J. Kobayashi, M. Yamato, M. Seki, and T. Okano, Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange, Lab on a Chip, vol.80, issue.5, pp.772-780, 2008.
DOI : 10.1039/b718281c

]. S. Migita, N. Hanagata, D. Tsuya, T. Yamazaki, Y. Sugimoto et al., Transfection efficiency for size-separated cells synchronized in cell cycle by microfluidic device, Biomedical Microdevices, vol.270, issue.4, pp.725-734, 2011.
DOI : 10.1007/s10544-011-9542-6

M. Yamada, M. Nakashima, and M. Seki, Pinched Flow Fractionation:?? Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel, Analytical Chemistry, vol.76, issue.18, pp.5465-71, 2004.
DOI : 10.1021/ac049863r

J. Takagi, M. Yamada, M. Yasuda, and M. Seki, Continuous particle separation in a microchannel having asymmetrically arranged multiple branches, Lab on a Chip, vol.21, issue.7, pp.778-84, 2005.
DOI : 10.1039/b501885d

A. V. Larsen, L. Poulsen, H. Birgens, M. Dufva, and A. Kristensen, Pinched flow fractionation devices for detection of single nucleotide polymorphisms, Lab on a Chip, vol.110, issue.5, pp.818-839, 2008.
DOI : 10.1039/b802268b

A. A. Bhagat, H. W. Hou, L. D. Li, C. T. Lim, J. Han et al., Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device, Analytical chemistry, vol.11, issue.77 3, pp.1870-1878, 2005.

A. Jain, L. L. Munn, L. R. Huang, E. C. Cox, R. H. Austin et al., Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip Continuous particle separation through deterministic lateral displacement, Science, vol.47, issue.304 5673, pp.24-27, 2004.

J. Davis, Deterministic hydrodynamics: Taking blood apart, Proceedings of the National Academy of Sciences, vol.103, issue.40, pp.14779-84, 2006.
DOI : 10.1073/pnas.0605967103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1595428

S. H. Holm, J. P. Beech, M. P. Barrett, and J. O. Tegenfeldt, Separation of parasites from human blood using deterministic lateral displacement, Lab on a Chip, vol.10, issue.2, pp.1326-1358, 2011.
DOI : 10.1039/c0lc00560f

R. Huang, A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women, Prenatal Diagnosis, vol.39, issue.10, pp.892-899, 2008.
DOI : 10.1002/pd.2079

J. P. Beech, S. H. Holm, K. Adolfsson, and J. O. Tegenfeldt, Sorting cells by size, shape and deformability, Lab on a Chip, vol.85, issue.6, 2012.
DOI : 10.1039/c2lc21083e

D. and D. Carlo, Inertial microfluidics, Lab on a Chip, vol.121, issue.21, pp.3038-3084, 2009.
DOI : 10.1039/b908271a

A. A. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, Continuous particle separation in spiral microchannels using dean flows and differential migration, Lab on a Chip, vol.3, issue.11, pp.1906-1920, 2008.
DOI : 10.1039/b807107a

D. Di-carlo, D. Irimia, R. G. Tompkins, and M. Toner, Continuous inertial focusing, ordering, and separation of particles in microchannels, Proceedings of the National Academy of Sciences of the United States of America, pp.18892-18899, 2007.
DOI : 10.1073/pnas.0704958104

A. A. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, Inertial microfluidics for continuous particle filtration and extraction, Microfluidics and Nanofluidics, vol.76, issue.2, pp.217-226, 2008.
DOI : 10.1007/s10404-008-0377-2

T. Tanaka, Inertial migration of cancer cells in blood flow in microchannels Sheathless inertial cell ordering for extreme throughput flow cytometry, Biomedical microdevices, vol.10, issue.3, pp.274-80, 2010.

Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, Soft inertial microfluidics for high throughput separation of bacteria from human blood cells, Lab on a Chip, vol.14, issue.9, pp.1193-1202, 2009.
DOI : 10.1039/b817611f

S. C. Hur, N. K. Henderson-maclennan, E. R. Mccabe, and D. D. Carlo, Deformability-based cell classification and enrichment using inertial microfluidics, Lab on a Chip, vol.98, issue.5, pp.912-920, 2011.
DOI : 10.1073/pnas.1010297107

A. A. Bhagat, H. W. Hou, L. D. Li, C. T. Lim, and J. Han, Dean Flow Fractionation (DFF) isolation of Circulating Tumor Cells (CTCS) from blood, MicroTAS, pp.524-526, 2012.

V. Parichehreh and P. Sethu, Inertial lift enhanced phase partitioning for continuous microfluidic surface energy based sorting of particles, Lab on a Chip, vol.351, issue.7, pp.1296-301, 2012.
DOI : 10.1088/1367-2630/11/7/075025

M. Hosokawa, Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells, Analytical Chemistry, vol.82, issue.15, pp.6629-6664, 2010.
DOI : 10.1021/ac101222x

H. M. Ji, V. Samper, Y. Chen, C. K. Heng, T. M. Lim et al., Silicon-based microfilters for whole blood cell separation, Biomedical Microdevices, vol.4, issue.2, pp.251-258, 2008.
DOI : 10.1007/s10544-007-9131-x

X. Chen, D. F. Cui, C. C. Liu, and H. Li, Microfluidic chip for blood cell separation and collection based on crossflow filtration, Sensors and Actuators B: Chemical, vol.130, issue.1, pp.216-221, 2008.
DOI : 10.1016/j.snb.2007.07.126

]. D. Choudhury, W. T. Ramsay, R. Kiss, N. Willoughby, L. Paterson et al., A 3D mammalian cell separator biochip, Lab on a Chip, vol.38, issue.5, 2012.
DOI : 10.1039/c2lc20939j

P. Sethu, A. Sin, and M. Toner, Microfluidic diffusive filter for apheresis (leukapheresis), Lab Chip, vol.288, issue.1, pp.83-92, 2006.
DOI : 10.1039/B512049G

H. Mohamed, J. N. Turner, and M. Caggana, Biochip for separating fetal cells from maternal circulation, Journal of Chromatography A, vol.1162, issue.2, pp.187-92, 2007.
DOI : 10.1016/j.chroma.2007.06.025

H. Wei, Particle sorting using a porous membrane in a microfluidic device, Lab Chip, vol.8, issue.2, pp.238-283, 2011.
DOI : 10.1039/C0LC00121J

R. Schirhagl, I. Fuereder, E. W. Hall, B. C. Medeiros, and R. N. Zare, Microfluidic purification and analysis of hematopoietic stem cells from bone marrow, Lab on a Chip, vol.18, issue.6, pp.3130-3135, 2011.
DOI : 10.1039/c1lc20353c

S. J. Tan, R. L. Lakshmi, P. Chen, W. Lim, L. Yobas et al., Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients, Biosensors and Bioelectronics, vol.26, issue.4, pp.1701-1706, 2010.
DOI : 10.1016/j.bios.2010.07.054

]. S. Zheng, 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood, Biomedical Microdevices, vol.1162, issue.2, 2010.
DOI : 10.1007/s10544-010-9485-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809998

H. K. Lin, Portable filter-based microdevice for detection and characterization of circulating tumor cells Clinical cancer research : an official journal of the American Association for, Cancer Research, vol.16, issue.20, pp.5011-5019, 2010.

N. Tran-minh, T. Dong, Q. Su, Z. Yang, H. Jakobsen et al., Design and optimization of non-clogging counter-flow microconcentrator for enriching epidermoid cervical carcinoma cells, Biomedical Microdevices, vol.8, issue.1, pp.179-90, 2011.
DOI : 10.1007/s10544-010-9483-5

]. S. Gupta, D. L. Feke, and I. Manas-zloczower, Fractionation of mixed particulate solids according to compressibility using ultrasonic standing wave fields, Chemical Engineering Science, vol.50, issue.20, pp.3275-3284, 1995.
DOI : 10.1016/0009-2509(95)00154-W

F. Petersson, A. Nilsson, C. Holm, H. Jonsson, and T. Laurell, Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces, Lab Chip, vol.28, issue.1, pp.20-22, 2005.
DOI : 10.1039/B405748C

M. Kumar, D. L. Feke, and J. M. Belovich, Fractionation of cell mixtures using acoustic and laminar flow fields, Biotechnology and Bioengineering, vol.5, issue.2, pp.129-166, 2005.
DOI : 10.1002/bit.20294

C. Ratier and M. Hoyos, Acoustic Programming in Step-Split-Flow Lateral-Transport Thin Fractionation, Analytical Chemistry, vol.82, issue.4, pp.1318-1343, 2010.
DOI : 10.1021/ac902357b

]. N. Harris, R. Boltryk, P. Glynne-jones, and M. Hill, A novel binary particle fractionation technique, Physics Procedia, vol.3, issue.1, pp.277-281, 2010.
DOI : 10.1016/j.phpro.2010.01.037

Y. Liu and K. Lim, Particle separation in microfluidics using a switching ultrasonic field, Lab on a Chip, vol.7, issue.2, pp.3167-3173, 2010.
DOI : 10.1039/c1lc20481e

J. Voldman, Electrical forces for microscale cell manipulation Annual review of biomedical engineering, pp.425-54, 2006.

J. Cheng, E. L. Sheldon, L. Wu, M. J. Heller, and J. P. , Isolation of Cultured Cervical Carcinoma Cells Mixed with Peripheral Blood Cells on a Bioelectronic Chip, Analytical Chemistry, vol.70, issue.11, pp.2321-2327, 1998.
DOI : 10.1021/ac971274g

J. H. Jung, G. Kim, and T. S. Seo, An integrated passive micromixer???magnetic separation???capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level, Lab on a Chip, vol.50, issue.20, pp.3465-3470, 2011.
DOI : 10.1039/c1lc20350a

N. Lewpiriyawong, K. Kandaswamy, C. Yang, V. Ivanov, and R. Stocker, Microfluidic Characterization and Continuous Separation of Cells and Particles Using Conducting Poly(dimethyl siloxane) Electrode Induced Alternating Current-Dielectrophoresis, Analytical Chemistry, vol.83, issue.24, pp.9579-85, 2011.
DOI : 10.1021/ac202137y

J. Sun, Simultaneous On-Chip DC Dielectrophoretic Cell Separation and Quantitative Separation Performance Characterization, Analytical Chemistry, vol.84, issue.4, 2012.
DOI : 10.1021/ac203212g

C. Fu, A. Spence, F. H. Scherer, S. R. Arnold, and . Quake, A microfabricated fluorescence-activated cell sorter, Nature biotechnology, vol.17, issue.11, pp.1109-1120, 1999.

T. D. Perroud, Infected Macrophages Using Optical Forces, Analytical Chemistry, vol.80, issue.16, pp.6365-72, 2008.
DOI : 10.1021/ac8007779

H. Sugino, Integration in a multilayer microfluidic chip of 8 parallel cell sorters with flow control by sol???gel transition of thermoreversible gelation polymer, Lab on a Chip, vol.317, issue.3, pp.2559-65, 1991.
DOI : 10.1039/c004192k

P. Chen, X. Feng, R. Hu, J. Sun, W. Du et al., Hydrodynamic gating valve for microfluidic fluorescence-activated cell sorting, Analytica Chimica Acta, vol.663, issue.1, pp.1-6, 2010.
DOI : 10.1016/j.aca.2010.01.046

T. Wu, Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter, pp.2-7, 2012.
DOI : 10.1039/c2lc21084c

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965373

J. J. Chalmers, M. Zborowski, L. Sun, and L. Moore, Flow through, immunomagnetic cell separation Biotechnology progress Micromagnetic-microfluidic blood cleansing device, Lab on a chip, vol.14, issue.9 9, pp.141-149, 1998.

T. P. Forbes and S. P. Forry, Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells, Lab on a Chip, vol.156, issue.8, 2012.
DOI : 10.1039/c2lc40113d

K. Hoshino, Microchip-based immunomagnetic detection of circulating tumor cells, Lab on a Chip, vol.15, issue.20, pp.3449-57, 2011.
DOI : 10.1039/c1lc20270g

D. Issadore, Self-assembled magnetic filter for highly efficient immunomagnetic separation, Lab Chip, vol.106, issue.1, pp.147-51, 2011.
DOI : 10.1039/C0LC00149J

]. Saliba, Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays, Proceedings of the National Academy of Sciences of the United States of America, pp.14524-14533, 2010.
DOI : 10.1073/pnas.1001515107

L. Saias, J. Autebert, L. Malaquin, and J. Viovy, Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems, Lab on a Chip, vol.21, issue.25, pp.822-854, 2011.
DOI : 10.1007/s12640-010-9152-8

S. Nagrath, Isolation of rare circulating tumour cells in cancer patients by microchip technology, Nature, vol.27, issue.7173, pp.1235-1239, 2007.
DOI : 10.1021/la048047b

J. P. Gleghorn, Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody, Lab Chip, vol.1162, issue.Suppl 10, pp.27-36, 2010.
DOI : 10.1039/B917959C

S. M. Santana, H. Liu, N. H. Bander, J. P. Gleghorn, and B. J. Kirby, Immunocapture of prostate cancer cells by use of anti-PSMA antibodies in microdevices, Biomedical Microdevices, vol.48, issue.2, 2011.
DOI : 10.1007/s10544-011-9616-5

U. Dharmasiri, S. Balamurugan, A. A. Adams, P. I. Okagbare, A. Obubuafo et al., Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device, ELECTROPHORESIS, vol.10, issue.18, pp.3289-300, 2009.
DOI : 10.1002/elps.200900141

X. Zheng, L. S. Cheung, J. Schroeder, L. Jiang, and Y. Zohar, Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells, Lab on a Chip, vol.147, issue.20, pp.3431-3440, 2011.
DOI : 10.1039/C1LC20331B

X. Zheng, L. S. Cheung, J. Schroeder, L. Jiang, and Y. Zohar, A high-performance microsystem for isolating circulating tumor cells, Lab on a Chip, vol.308, issue.19, 2011.
DOI : 10.1039/c1lc20331b

S. Wang, Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers, Angewandte Chemie, pp.3084-3088, 2011.

S. L. Stott, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip, Proceedings of the National Academy of Sciences, vol.107, issue.43, pp.18392-18399, 2010.
DOI : 10.1073/pnas.1012539107

S. Mittal, I. Y. Wong, W. M. Deen, and M. Toner, Antibody-Functionalized Fluid-Permeable Surfaces for Rolling Cell Capture at High Flow Rates, Biophysical Journal, vol.102, issue.4, pp.721-751, 2012.
DOI : 10.1016/j.bpj.2011.12.044

P. Li, Y. Gao, and D. Pappas, Negative Enrichment of Target Cells by Microfluidic Affinity Chromatography, Analytical Chemistry, vol.83, issue.20, pp.7863-7869, 2011.
DOI : 10.1021/ac201752s

F. Farace, A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas, British Journal of Cancer, vol.156, issue.6, pp.847-53, 2011.
DOI : 10.1038/bjc.2011.294

M. Gerlinger, Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing, New England Journal of Medicine, vol.366, issue.10, pp.883-892, 2012.
DOI : 10.1056/NEJMoa1113205

L. Vermeulen, F. De-sousa-e-melo, D. J. Richel, and J. P. Medema, The developing cancer stem-cell model: clinical challenges and opportunities, The Lancet Oncology, vol.13, issue.2, pp.83-92, 2012.
DOI : 10.1016/S1470-2045(11)70257-1

J. P. Thiery, Epithelial???mesenchymal transitions in tumour progression, Nature Reviews Cancer, vol.59, issue.6, pp.442-54, 2002.
DOI : 10.1038/nrc822