I. Aoki, Detection of the anoxic depolarization of focal ischemia using manganese-enhanced MRI, Magnetic Resonance in Medicine, vol.32, issue.1, pp.7-12, 2003.
DOI : 10.1002/mrm.10528

I. Aoki, In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI, NeuroImage, vol.22, issue.3, pp.1046-1059, 2004.
DOI : 10.1016/j.neuroimage.2004.03.031

M. Aschner, Manganese: Brain Transport and Emerging Research Needs, Environmental Health Perspectives, vol.108, issue.s3, pp.429-432, 2000.
DOI : 10.1289/ehp.00108s3429

M. Aschner, B. Lukey, and A. Tremblay, The Manganese Health Research Program (MHRP): Status report and future research needs and directions, NeuroToxicology, vol.27, issue.5, pp.733-736, 2006.
DOI : 10.1016/j.neuro.2005.10.005

M. Aschner, B. Lukey, and A. Tremblay, The Manganese Health Research Program (MHRP): Status report and future research needs and directions, NeuroToxicology, vol.27, issue.5, pp.733-736, 2006.
DOI : 10.1016/j.neuro.2005.10.005

M. Aschner, Manganese: Recent advances in understanding its transport and neurotoxicity, Toxicology and Applied Pharmacology, vol.221, issue.2, pp.131-147, 2007.
DOI : 10.1016/j.taap.2007.03.001

M. &. Aschner and D. C. Dorman, Manganese, Toxicological Reviews, vol.17, issue.6, pp.147-154, 2006.
DOI : 10.2165/00139709-200625030-00002

URL : https://hal.archives-ouvertes.fr/hal-00439893

E. L. Barbier, Focal brain ischemia in rat: acute changes in brain tissueT1 reflect acute increase in brain tissue water content, NMR in Biomedicine, vol.52, issue.8, pp.499-506, 2005.
DOI : 10.1002/nbm.979

N. A. Bock, Cerebrospinal fluid to brain transport of manganese in a nonhuman primate revealed by MRI, Brain Research, issue.0, pp.1198160-170, 2008.

N. A. Bock, Cerebrospinal fluid to brain transport of manganese in a nonhuman primate revealed by MRI, Brain Research, pp.160-170, 1198.

S. Bohic, Biomedical applications of the ESRF synchrotron-based microspectroscopy platform, Journal of Structural Biology, vol.177, issue.2, pp.248-258, 2012.
DOI : 10.1016/j.jsb.2011.12.006

URL : https://hal.archives-ouvertes.fr/inserm-00855368

E. Bonilla, The regional distribution of manganese in the normal human brain, Neurochemical Research, vol.42, issue.2, pp.221-227, 1982.
DOI : 10.1007/BF00965060

A. C. Chua and E. H. Morgan, Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat, Biological Trace Element Research, vol.211, issue.1-2, pp.39-54, 1996.
DOI : 10.1007/BF02784167

P. Drapeau and D. A. Nachshen, Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain., The Journal of Physiology, vol.348, issue.1, pp.493-510, 1984.
DOI : 10.1113/jphysiol.1984.sp015121

O. Eschenko, Behavioral, electrophysiological and histopathological consequences of systemic manganese administration in MEMRI, Magnetic Resonance Imaging, vol.28, issue.8, pp.1165-1174, 2010.
DOI : 10.1016/j.mri.2009.12.022

V. A. Fitsanakis, Manganese (Mn) and Iron (Fe): Interdependency of Transport and Regulation, Neurotoxicity Research, vol.83, issue.11, pp.124-131, 2010.
DOI : 10.1007/s12640-009-9130-1

C. J. Frederickson, Neurobiology of Zinc and Zinc-Containing Neurons, International Review of Neurobiology, vol.31, pp.145-238, 1989.
DOI : 10.1016/S0074-7742(08)60279-2

B. Gallez, Accumulation of Manganese in the Brain of Mice after Intravenous Injection of Manganese-Based Contrast Agents, Chemical Research in Toxicology, vol.10, issue.4, pp.360-363, 1997.
DOI : 10.1021/tx960194p

M. S. Golub, Neurobehavioral evaluation of rhesus monkey infants fed cow's milk formula, soy formula, or soy formula with added manganese, Neurotoxicology and Teratology, vol.27, issue.4, pp.615-627, 2005.
DOI : 10.1016/j.ntt.2005.04.003

F. M. Haug, Electron microscopical localization of the zinc in hippocampal mossy fibre synapses by a modified sulfide silver procedure, Histochemie, vol.1, issue.4, pp.355-368, 1967.
DOI : 10.1007/BF00401978

H. Hetherington, Novel approaches to imaging epilepsy by MRI, Future Neurology, vol.4, issue.3, pp.295-304, 2009.
DOI : 10.2217/fnl.09.12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743439

E. Huang, Upregulation of iron regulatory proteins and divalent metal transporter-1 isoforms in the rat hippocampus after kainate induced neuronal injury, Experimental Brain Research, vol.51, issue.3, pp.376-386, 2006.
DOI : 10.1007/s00221-005-0220-x

K. H. Janssens, F. C. Adams, and A. Rindby, Evaluation and calibration of micro-XRF data. In Microscopic X-ray fluorescence analysis, pp.155-207, 2000.

M. D. De-jonge, Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution, Proceedings of the National Academy of Sciences, vol.107, issue.36, pp.15676-15680, 2010.
DOI : 10.1073/pnas.1001469107

K. A. Josephs, Neurologic manifestations in welders with pallidal MRI T1 hyperintensity, Neurology, vol.64, issue.12, pp.2033-2039, 2005.
DOI : 10.1212/01.WNL.0000167411.93483.A1

K. Kemp and G. Danscher, Multi-element analysis of the rat hippocampus by proton induced X-ray emission spectroscopy (phosphorus, sulphur, chlorine, potassium, calcium, iron, zinc, copper, lead, bromine, and rubidium), Histochemistry, vol.46, issue.3, 1979.
DOI : 10.1007/BF00495664

A. P. Koretsky and A. C. Silva, Manganese-enhanced magnetic resonance imaging (MEMRI), NMR in Biomedicine, vol.16, issue.8, pp.527-531, 2004.
DOI : 10.1002/nbm.940

C. L. Kwik-uribe, Alterations in cellular IRP-dependent iron regulation by in vitro manganese exposure in undifferentiated PC12 cells, Brain Research, vol.973, issue.1, pp.1-15, 2003.
DOI : 10.1016/S0006-8993(03)02457-0

J. F. Liu, G. B. Jiang, and Y. D. Feng, Flow injection spectrophotometric determination of copper, iron, manganese, and zinc in animal feeds using a common manifold, Journal of AOAC International, vol.83, issue.6, pp.1293-1298, 2000.

E. A. Malecki, Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons, Brain Research Bulletin, vol.55, issue.2, pp.225-228, 2001.
DOI : 10.1016/S0361-9230(01)00456-7

G. V. Malthankar, Differential Lowering by Manganese Treatment of Activities of Glycolytic and Tricarboxylic Acid (TCA) Cycle Enzymes Investigated in Neuroblastoma and Astrocytoma Cells Is Associated with Manganese-Induced Cell Death, Neurochemical Research, vol.29, issue.4, pp.709-717, 2004.
DOI : 10.1023/B:NERE.0000018841.98399.ce

S. Minoshima and D. Cross, In vivo imaging of axonal transport using MRI: aging and Alzheimer???s disease, European Journal of Nuclear Medicine and Molecular Imaging, vol.307, issue.8926, pp.89-92, 2008.
DOI : 10.1007/s00259-007-0707-8

S. I. Mok, J. P. Munasinghe, and W. S. Young, Infusion-based manganese-enhanced MRI: a new imaging technique to visualize the mouse brain-114. -enhanced magnetic resonance imaging of mossy fiber plasticity in vivo, Brain Structure and Function NeuroImage, vol.217, issue.301, pp.107130-135, 2011.

K. Narita, F. Kawasaki, and H. Kita, Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs, Brain Research, vol.510, issue.2, pp.289-82, 1990.
DOI : 10.1016/0006-8993(90)91379-U

R. G. Pautler, In vivo, trans-synaptic tract-tracing utilizing manganese-enhanced magnetic resonance imaging (MEMRI), NMR in Biomedicine, vol.48, issue.8, pp.595-601, 2004.
DOI : 10.1002/nbm.942

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates -The New Coronal Set, 2004.

C. Schmitt, Active transport at the blood-CSF barrier contributes to manganese influx into the brain, Journal of Neurochemistry, vol.192, issue.4, pp.747-756, 2011.
DOI : 10.1111/j.1471-4159.2011.07246.x

URL : https://hal.archives-ouvertes.fr/hal-01060697

H. Shen, Zinc Distribution and Expression Pattern of ZnT3 in Mouse Brain, Biological Trace Element Research, vol.377, issue.2, pp.166-174, 2007.
DOI : 10.1007/s12011-007-0056-2

J. Sievers, Development of astroglial cells in the proliferative matrices, the granule cell layer, and the hippocampal fissure of the hamster dentate gyrus, The Journal of Comparative Neurology, vol.48, issue.1, pp.1-32, 1992.
DOI : 10.1002/cne.903200102

A. C. Silva, Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations, NMR in Biomedicine, vol.21, issue.8, pp.532-543, 2004.
DOI : 10.1002/nbm.945

W. N. Sloot and J. P. Gramsbergen, Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia, Brain Research, vol.657, issue.1-2, pp.124-132, 1994.
DOI : 10.1016/0006-8993(94)90959-8

K. D. Smith, In vivo axonal transport rates decrease in a mouse model of NeuroImage, pp.1401-1408, 2007.

. Sole, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.1, pp.63-68, 2007.
DOI : 10.1016/j.sab.2006.12.002

C. H. Sotak, K. Sharer, and A. P. Koretsky, Manganese cell labeling of murine hepatocytes using manganese(III)-transferrin, Contrast Media & Molecular Imaging, vol.444, issue.3, pp.95-105, 2008.
DOI : 10.1002/cmmi.235

D. L. Stredrick, Manganese-Induced Cytotoxicity in Dopamine-Producing Cells, NeuroToxicology, vol.25, issue.4, pp.543-553, 2004.
DOI : 10.1016/j.neuro.2003.08.006

T. Tarohda, Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats, Analytical and Bioanalytical Chemistry, vol.162, issue.2, pp.224-234, 2005.
DOI : 10.1007/s00216-005-3423-x

A. Tracqui, Determination of manganese in human brain samples, Forensic Science International, vol.76, issue.3, pp.199-203, 1995.
DOI : 10.1016/0379-0738(95)01822-0

T. Watanabe, In vivo 3D MRI staining of the mouse hippocampal system using intracerebral injection of MnCl2, NeuroImage, vol.22, issue.2, pp.860-867, 2004.
DOI : 10.1016/j.neuroimage.2004.01.028

M. Yasui, K. Ota, and R. M. Garruto, Effects of calcium-deficient diets on manganese deposition in the central nervous system and bones of rats, Neurotoxicology, vol.16, issue.3, pp.511-517, 1995.

W. Zheng and Q. Zhao, Iron overload following manganese exposure in cultured neuronal, but not neuroglial cells, Brain Research, vol.897, issue.1-2, pp.175-179, 2001.
DOI : 10.1016/S0006-8993(01)02049-2

C. Zwingmann, D. Leibfritz, and A. S. Hazell, Brain Energy Metabolism in a Sub-Acute Rat Model of Manganese Neurotoxicity: An Ex Vivo Nuclear Magnetic Resonance Study Using [1-13C]Glucose, NeuroToxicology, vol.25, issue.4, pp.573-587, 2004.
DOI : 10.1016/j.neuro.2003.08.002