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ABSTRACT  173 

Background: Genome-wide association studies (GWAS) have identified determinants 174 

of chronic obstructive pulmonary disease, asthma and lung function level, however 175 

none addressed decline in lung function.  176 

Aim: We conducted the first GWAS on age-related decline in forced expiratory volume 177 

in the first second (FEV1) and in its ratio to forced vital capacity (FVC) stratified a priori 178 

by asthma status.  179 

Methods: Discovery cohorts included adults of European ancestry (1441 asthmatics, 180 

2677 non-asthmatics; Epidemiological Study on the Genetics and Environment of 181 

Asthma (EGEA); Swiss Cohort Study on Air Pollution And Lung And Heart Disease In 182 

Adults (SAPALDIA); European Community Respiratory Health Survey (ECRHS)). The 183 

associations of FEV1 and FEV1/FVC decline with 2.5 million single nucleotide 184 

polymorphisms (SNPs) were estimated. Thirty loci were followed-up by in silico 185 

replication (1160 asthmatics, 10858 non-asthmatics: Atherosclerosis Risk in 186 

Communities (ARIC); Framingham Heart Study (FHS); British 1958 Birth Cohort 187 

(B58C); Dutch asthma study).  188 

Results: Main signals identified differed between asthmatics and non-asthmatics. None 189 

of the SNPs reached genome-wide significance. The association between the height 190 

related gene DLEU7 and FEV1 decline suggested for non-asthmatics in the discovery 191 

phase was replicated (discovery P=4.8x10-6; replication P=0.03) and additional 192 

sensitivity analyses point to a relation to growth. The top ranking signal, TUSC3, 193 

associated with FEV1/FVC decline in asthmatics (P=5.3x10-8) did not replicate. SNPs 194 
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previously associated with cross-sectional lung function were not prominently 195 

associated with decline.  196 

Conclusions: Genetic heterogeneity of lung function may be extensive. Our results 197 

suggest that genetic determinants of longitudinal and cross-sectional lung function differ 198 

and vary by asthma status.  199 

 200 

 201 

Key Messages: 202 

• Knowledge regarding genes with pleiotropic effects on asthma, chronic 203 

obstructive pulmonary disease as well as on lung function level and its 204 

longitudinal course is limited.  205 

• This first GWAS meta-analysis on lung function decline conducted separately in 206 

non-asthmatic and asthmatic cohort participants suggests that genetic 207 

determinants of lung function decline are different in the two groups.  208 

• The results further suggest that previously identified genetic determinants of 209 

cross-sectional lung function are not major determinants of the decline.  210 

 211 

 212 

Capsule summary:  213 

This meta-analysis provides evidence for genetic heterogeneity of lung function 214 

between asthmatics and non-asthmatics; and between cross-sectionally and 215 

longitudinally measured lung function. The study adds evidence for the role of height-216 

related genes in lung health. 217 
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This article has in support of the manuscript online repository materials. 219 
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Abbreviations:  224 

ARIC, Atherosclerosis Risk in Communities Study  225 

ATS, American Thoracic Society 226 

B58C,   British 1958 Birth Cohort  227 

chr, chromosome 228 

COPD, chronic obstructive pulmonary disease 229 

ECRHS, European Community Respiratory Health Survey 230 

EGEA, Genetics and Environment of Asthma 231 

FEV1, forced expiratory volume in the first second 232 

FHS, Framingham Heart Study 233 

FVC, forced vital capacity 234 

GWAS, genome-wide association studies  235 

HapMap, Haplotype Map Project 236 

Q-Q, Quantile-quantile 237 

SAPALDIA, Swiss Cohort Study on Air Pollution And Lung And Heart Disease In Adults  238 

SNP, single nucleotide polymorphism 239 
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INTRODUCTION  240 

Low lung function is a feature of both asthma and chronic obstructive pulmonary 241 

disease (COPD), with twin studies demonstrating strong heritability (0.51 to 0.77) for 242 

forced expiratory volume in the first second (FEV1)1, 2. The two respiratory diseases and 243 

lung function itself share predisposing and phenotypic features, including increased 244 

airway responsiveness and atopy as well as exogenous risk factors3, 4. Genome-wide 245 

association studies (GWAS) have identified novel genetic loci for asthma5-10, COPD11-14, 246 

and lung function15-18 and provide the opportunity to study agnostically their overlap in 247 

genetic background19. Some of the implicated genes, such as PDE4D, support a link 248 

between asthma and COPD which may be rooted in shared pathways during lung 249 

development20. However, the majority of the genes implicated in asthma or COPD 250 

GWAS analyses have not been identified as top association signals in GWAS for lung 251 

function in the general population15-18, with the exception of HHIP and FAM13A being 252 

associated with both lung function15-18 and COPD11-14. Several lines of evidence suggest 253 

that different genes influence lung function in asthmatics and in non-asthmatics. 254 

Genome-scans in family based linkage studies identified some, but overall limited 255 

overlap between chromosomal regions linked to lung function in asthmatics21, COPD 256 

patients22 and in the general population23 and it has been suggested that genetic 257 

variation may be more important for lung function in asthma after adjusting for smoking 258 

and body size differences21, 24, 25.  259 

Here, we present results from the first lung function GWAS conducted separately for 260 

asthmatics and non-asthmatics. This current study also focuses on the rate of lung 261 

function decline in adults instead of cross-sectional lung function parameters tested in 262 
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previous GWAS15-18. The discovery cohorts included two population-based studies 263 

(SAPALDIA and ECRHS) and one asthma family-based study (EGEA), all of European 264 

ancestry with highly comparable and standardized assessment of respiratory health 265 

parameters including spirometry from two time points ten years apart. These three 266 

studies had been included in the GWAS for asthma conducted by the GABRIEL 267 

consortium7. Replication cohorts included three population-based cohorts (FHS, ARIC, 268 

B58C) and one family-based asthma study (the Dutch Asthma Study).  269 
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METHODS 270 

- Discovery cohorts and study population: Three large multi-centric cohorts EGEA26, 271 

SAPALDIA27 and ECRHS28 constitute the ESE-consortium. Personal factors of 272 

relevance to lung function decline were assessed by interview and anthropometric 273 

measurements at baseline and follow-up. Participants included in discovery phase were 274 

derived from the nested asthma case/control samples (SAPALDIA and ECRHS) or from 275 

the entire study population (EGEA) subjected to genome-wide genotyping in the context 276 

of the GABRIEL asthma GWAS7. Baseline and follow-up examination were roughly 10 277 

years apart. The analysis was restricted to adult participants (age ≥18 years at the time 278 

of the baseline spirometry) with complete information on age, height and sex as well as 279 

valid lung function measure from both surveys. Cohort study protocols were in 280 

agreement with the Declaration of Helsinki and obtained ethical approval from their 281 

respective regional and/or national review boards.  282 

- Lung function assessments, asthma status and genotypes: At each visit, a minimum of 283 

two acceptable forced expiratory flows, forced vital capacity (FVC) and forced expiratory 284 

volume in the first second (FEV1) complying with American Thoracic Society criteria 285 

were obtained26-29. No bronchodilator was administered. Based on questionnaire data, 286 

asthmatics were defined as asthma self-report at any of the completed surveys and 287 

family-based studies considered additional clinical asthma criteria (see online 288 

repository).  Genotyping for discovery cohorts was centrally performed on the Illumina 289 

Human 610quad BeadChip at the Centre National de Génotypage (CNG, Evry, 290 

France)7. Imputation of genotypes based on Hapmap2 reference panel, investigation of 291 
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population stratification and quality control criteria are described in Figure EI and Table 292 

EI in the Online Repository.  293 

-Replication Cohorts: Four cohorts of European ancestry with available genome-wide 294 

data,  ARIC30, FHS15; B58C31; Dutch asthma study32 were used for replication. Subjects 295 

included in the current analysis were older than 24 years, had complete information on 296 

covariates (age, height, and sex) and valid lung function measures from at least two 297 

time-points. The lung function measurements were conducted at least ten years apart, 298 

except three years apart for ARIC (Table I). Distinct genotype data platforms and 299 

imputation software were used (Table EII, Online Repository).  300 

- Statistical analysis: Annual decline in FEV1 and FEV1/FVC was calculated as 301 

difference between follow-up and baseline spirometric measurements (mL for FEV1 and 302 

% for FEV1/FVC) divided by the duration of follow-up in years. Standardized residuals 303 

were derived from sex-specific linear regression models adjusted for age, height and 304 

study centre in asthmatics and non-asthmatics separately. Comparability between 305 

studies of standardized residuals was tested using Wilcoxon-Mann-Whitney test 306 

(P>0.94). The standardized residuals were used as dependent variable and regressed 307 

on genome-wide single nucleotide polymorphisms (SNPs) adjusted for study-specific 308 

principal components capturing population ancestry (see online supplement for details). 309 

Study-specific SNP effect estimates were combined through meta-analysis using fixed 310 

and random effects models. We used a threshold of P<5x10-8 (the Bonferroni 311 

adjustment for one million independent tests) to declare a pooled effect as genome-312 

wide significant. Selection criteria for replication loci are described in the methods 313 

section of the online repository. SNPs with suggestive evidence of association with 314 
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decline in FEV1 or FEV1/FVC were chosen for in silico replication (Table EIII, Online 315 

Repository). Study-specific regression models and meta-analyses across replication 316 

cohorts were as described for the discovery phase. Replication cohorts with spirometry 317 

data from more than two different time points modelled the lung function decline 318 

phenotype by fitting a least-squares slope using the available data (FHS, Dutch asthma 319 

study). P≤0.05 was considered as statistically significant at the replication level.  320 

The results of the main meta-analyses for the top 1000 SNPs are available in the online 321 

repository (Table EIV A to D, Online Repository). We also conducted a meta-analysis by 322 

combining non-asthmatic and asthmatic samples and tested for heterogeneity between 323 

these samples (Table EV, Online Repository). Additional sensitivity analyses were done 324 

by: a) restricting the GWAS sample to subjects aged 30 and older for FEV1 decline 325 

(Table EIV E and F, Online Repository); b) conducting GWAS analyses on percent 326 

change instead of absolute annual decline in lung function (Table EIV G to J, Online 327 

Repository); c) investigating smoking stratified joint effects for replications SNPs (Table 328 

EVI, Online Repository); d) excluding ARIC, a cohort having substantially shorter follow-329 

up time that the other cohorts (three years instead of ten years) from replication 330 

analyses (Table EVII, Online Repository). Methods and results of these additional 331 

analyses are described in the online repository. 332 

 333 
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RESULTS 334 

Characteristics of the study populations 335 

The cohorts included in this study differed by age and type of recruitment, and 336 

accordingly in lung function and the proportion of subjects with FEV1/FVC below 70% 337 

(Table I, Table EVIII, Online Repository). Baseline lung function parameters, but not 338 

their annual changes were lower in asthmatics when compared to non-asthmatics in 339 

each study. The proportion of never smokers was comparable among asthmatics, but 340 

varied among non-asthmatics (ranging from 28.5% in B58C to 46.5% in EGEA). No 341 

substantial differences in the smoking prevalence between people with and without 342 

asthma were observed within each study. Comparing the discovery cohorts in more 343 

detail (Table EVIII, Online Repository), atopy (total IgE ≥100kU/ml) and hay fever were 344 

more prevalent in both asthmatics and non-asthmatics from EGEA when compared to 345 

ECRHS and SAPALDIA. Current asthma was more prevalent (84.4%) in EGEA than in 346 

SAPALDIA (25.5%) or ECRHS (43.3%) and the prevalence of a positive family history 347 

for asthma was also highest in EGEA, in agreement with the study design. Asthmatics 348 

from EGEA had a younger age of disease onset due to the mode of recruitment of the 349 

proband.  350 

 351 

Main findings from meta-analyses of discovery and replication phase  352 

In the discovery phase, GWAS meta-analysis of decline in FEV1 and FEV1/FVC was 353 

conducted in 2677 non-asthmatics and in 1441 asthmatics. Genomic inflation factors 354 

were low for both lung function parameters (λ<1.047, Table EIX, Online Repository) 355 

suggesting minimal unaccounted population stratification. The replication panel included 356 
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a total of 10’858 non-asthmatics and 1’138 asthmatics. Thirty lead SNPs belonging to 357 

30 loci (5x10-8< Pdiscovery <6x10-5) were chosen for replication.  358 

The four lung function parameter- and asthma-specific meta-analyses identified one 359 

association signal that almost reached the genome-wide significance level (P = 5.3x10-
360 

8) at the locus 8p22 containing the TUSC3 gene for FEV1/FVC decline in asthmatics 361 

while all other signals had P<5x10-7 (Figure I), but this signal was not associated with 362 

FEV1/FVC decline in asthmatics in the replication sample. The only locus of the 363 

selected replication candidate loci that formally replicated was 13q14.3, containing the 364 

DLEU7 gene, associated with decline in FEV1 in the non-asthmatics (Pdiscovery=4.8x10-6 365 

and  Preplication=0.03).  366 

In the global post hoc analysis combining both asthmatics and non-asthmatics 367 

(N=4118), a striking finding was the absence of any pronounced association signals (P 368 

>1x10-6) despite increased statistical power. This was in agreement with the minimal 369 

overlap of association signals observed in asthmatics and non-asthmatics separately. 370 

Most signals at P<10-5 from the asthma-stratified analysis in the discovery phase 371 

exhibited statistically significant heterogeneity of effects between the two groups (Table 372 

II). At the replication stage, none of the replication SNPs was associated with lung 373 

function decline in asthmatics and non-asthmatics combined. 374 

 375 

Association signals for annual decline in FEV1 in non-asthmatics 376 

Of fifteen SNPs associated at P<10-5 with decline in FEV1 in non-asthmatics ten were 377 

clustered at position 112.3 Mb on chromosome 9, containing genes TXN, MUSK and 378 

SVEP1. Two of the 15 SNPs were located at 13q14.3 in a locus containing the DLEU7 379 
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gene; three SNPs belonged to three distinct loci. The association of lead and proxy 380 

SNPs in DLEU7 (Figure II), but not TXN/MUSK/SVEP1 (Figure EII) or the other SNPs 381 

(Table II) replicated. The G-allele of SNP rs9316500 near the DLEU7 gene was 382 

positively associated with annual FEV1 decline in the discovery cohorts (P=4.8x10-6) 383 

and in the replication cohorts (P=0.026). Although heterogeneity between studies was 384 

not significant (P=0.61), the combined P value did not reach the genome-wide level 385 

(P=5.7x10-5).  386 

 387 

Association signals for annual decline in FEV1 in asthmatics  388 

Eighteen SNPs in nine distinct chromosomal locations were associated with decline in 389 

FEV1 in asthmatics at P<10-5. None of the loci selected for in silico replication was 390 

confirmed (Table II).  391 

 392 

Association signals for annual decline in FEV1/FVC in non-asthmatics  393 

Seven loci showed association with FEV1/FVC decline in non-asthmatics at 10-6<P<10-
394 

5, but no locus selected for replication was confirmed (Table II).  395 

 396 

Association signals for annual decline in FEV1/FVC in asthmatics 397 

Twelve SNPs at the locus 8p22 containing the gene TUSC3 at 15.68Mb were 398 

associated with FEV1/FVC decline at P<10-7 in asthmatics (Figure I). Regional locus 399 

plot and forest plot are presented in the online repository (Figure EIII). The top 400 

association signals in this locus were conferred by distinct SNPs in each cohort, though 401 

apparently they were located in the same putative haplotype segment in SAPALDIA and 402 
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in EGEA (Figure EIV, Online Repository). There was no statistically significant 403 

association in ECRHS. Meta-analysis of the discovery samples identified SNP 404 

rs4831760 as top signal in TUSC3 gene, but heterogeneity between discovery studies 405 

was borderline significant (P=0.07). The C-allele (P=5.3x10-8) was positively associated 406 

with annual decline in FEV1/FVC in asthmatics (Beta=0.22 ±0.04 (standard error); Table 407 

II). However this association was not replicated (P=0.80). In the meta-analysis 408 

combining discovery and replication samples the resulting P-value for rs4831760 was 409 

2.8x10-5. All but the Dutch asthma study, exhibited effect estimates in the same 410 

direction as the discovery panel. Two other candidate loci (MPP7 and SYNE2) also 411 

failed replication testing. 412 

   413 

SNPs previously associated in GWAS meta-analyses on cross-sectional lung function  414 

The associations of top hit SNPs from previous GWAS meta-analyses on cross-415 

sectional lung function11, 15-18 and a replication study in asthmatics33 were assessed 416 

separately for asthmatics and non-asthmatics in the discovery cohorts. Associations 417 

were assessed for both, lung function parameters of decline (annual decline and 418 

percent change) and cross-sectional lung function level. Overall, a subset of variants 419 

and loci showed replication of association with cross-sectional lung function in either 420 

non-asthmatics or asthmatics. Few of the loci showed strong association with decline in 421 

lung function. We present associations at P<0.05 in Table III and those at P≥0.05 in 422 

Table EX in the online repository. 423 

For baseline FEV1, we observed associations for SNPs belonging to 4q24 (GSTCD, 424 

rs11731417, P=1.3x10-4) and 15q23 (THSD4, rs1913768, P=0.003). Associations with 425 
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baseline FEV1 were mainly restricted to non-asthmatics. For baseline FEV1/FVC, 426 

associations of SNPs of THSD4 were prominent (e.g. rs12899618, P=3.3x10-4) and 427 

again restricted to non-asthmatics.  428 

For decline phenotypes of FEV1, we observed associations for SNPs in regions 6p21 429 

(DAAM2, 0.003<P<0.02) and 4q28 (HHIP, 0.02<P<0.05) among asthmatics and in 430 

THSD4 (0.003<P<0.04) among non-asthmatics. The strongest associations observed 431 

for decline phenotypes of FEV1/FVC were two SNPs in MMP15 (16q13, 432 

0.003<P<0.002) in non-asthmatics, only. Association in the combined sample of 433 

asthmatics and non-asthmatics did not substantially alter the results. 434 

 435 

Summary of findings from sensitivity analyses  436 

We observed in non-asthmatics, aged 30 years and more, that MUSK and DLEU7 were 437 

no longer prominently associated with FEV1 decline, but SNPs in other genes remained 438 

strongly associated (ZIC1, rs6785065, P=2.3x10-5; UBL3, rs278037, P=4.8x10-5). 439 

Results of the GWAS on percent change in lung function showed that the FEV1 440 

association signal for DLEU7 in the non-asthmatics was no longer significant; however 441 

the signals for MUSK (rs1889321, P=2.92x10-7) and other loci remained unaltered 442 

(ZIC1, rs6785065, P=2.0x10-5; KIRREL3, rs11604082, P=4.1x10-6; KIAA2117, 443 

rs10082549, P=2.7x10-6). Top signals associated with decline in FEV1/FVC in 444 

asthmatics remained unaltered for TUSC3 (rs4831760, P=5.2x10-8) and for SYNE2 445 

(rs7144584, P=6.4x10-7) after taking baseline lung function into account. 446 
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Smoking stratified analyses of the replication SNPs revealed no substantial difference in 447 

association between ever and never smokers except for a few SNPs belonging to loci 448 

containing SYNE2, RORA, BCAS1, or PLXNA4 genes.  449 

Replication meta-analysis excluding the ARIC data substantially reduced sample size in 450 

non-asthmatics and the association of DLEU7 with decline of FEV1 was no longer 451 

significant. Instead two loci for association with decline in FEV1 in asthmatics (PLXNA4, 452 

rs10808265, Pdiscovery=1.7x10-6, Preplication=0.02 and SLC45A3, rs16856186, 453 

Pdiscovery=8.9x10-6, Preplication=0.04) and one locus, FLJ25393, for decline in FEV1/FVC in 454 

non-asthmatics (rs2658782, Pdiscovery=4.3x10-6, Preplication=0.03) gained statistical 455 

significance.  456 

 457 
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DISCUSSION 458 

A main result of this study is the observed genetic heterogeneity of lung function decline 459 

between asthmatics and non-asthmatics. When we combined the two groups in the 460 

discovery phase we observed no genome-wide significant association signal despite 461 

larger sample size. All top hit association signals detected by the asthma stratified 462 

analysis showed significant heterogeneity according to the disease status. In the 463 

replication phase, this heterogeneity was also confirmed for the DLEU7 locus which was 464 

associated with FEV1 decline in non-asthmatics only. Finally, many of the SNPs 465 

identified by previous GWAS on lung function exhibited associations specific to asthma 466 

status. 467 

 468 

The finding of genetic heterogeneity in lung function reported here is consistent with 469 

available evidence. Differences in familial segregation of FEV1 in asthmatic and non-470 

asthmatic families previously suggested genetic heterogeneity between these two 471 

groups24. Agnostic studies investigating genetic determinants of lung function in both, 472 

family-based 21, 22, 34-37 and population-based samples15-18, 23, 25 produced little overlap in 473 

chromosomal regions. Genome-wide scans on lung function in asthma21, 38 or COPD22 474 

families also suggested a heterogeneous genetic architecture of lung function. 475 

 476 

Nevertheless, some previously reported overlapping linkage regions for the ratio of 477 

FEV1 over vital capacity (FEV1/VC) and FEV1 over the forced vital capacity 478 

(FEV1/FVC) in families with asthma and COPD21, 22 suggest that at least some gene(s) 479 

could be important in the development of airway obstruction in both diseases. 480 
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Furthermore, genetic polymorphisms in glutathione S-transferases39-42 as well as 481 

ADAM-3343-46 were associated with lower lung function at all ages and in different 482 

subgroups of the population (general population, patients with COPD and asthma). 483 

Gene-lung function associations that are of relevance to several population and patient 484 

strata may be determined specifically by complex gene-gene and gene-environment 485 

interactions, as suggested for lung function decline and its complex association with 486 

estrogen receptor 1 polymorphisms, smoking, steroid use, and gender32, 47. While 487 

ignored in ours as well as previous GWAS, such effect modifications should be 488 

considered in the future48.  489 

 490 

Results from the Busselton Health Study on familial aggregation and heritability of adult 491 

lung function previously suggested the existence of genetic determinants of adult lung 492 

function independent of asthma, atopy, cigarette smoking, height, age or sex25. 493 

Consistent with these results, neither asthma, atopy and COPD genes previously 494 

identified in large GWAS5-9, 11 nor genes related to smoking behavior49  were associated 495 

with lung function decline in our study. The association of FEV1 decline with a gene 496 

related to height, DLEU7, was ranking high, but only in subjects without asthma 497 

(rs9316500, Pdiscovery=4.8x 10-6; Preplication=0.03). DLEU7 gene product and expression 498 

remain poorly characterized, but its mRNA has been detected in the lung. The DLEU7 499 

locus was identified as a determinant of adult height in previous GWAS meta-500 

analyses50-52. Three other height genes, HHIP, GPR126 and PTCH, were associated 501 

with cross-sectional lung function15-17. All of these lung function models including ours 502 

were adjusted for adult height. The observed association, related to both HHIP and 503 
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DLEU7 being associated with peak height velocity in infancy51, suggests that aspects 504 

beyond adult height influence lung function and possibly its response to non-genetic 505 

determinants. Several genes implicated in respiratory diseases indicate that early lung 506 

development impacts respiratory health later in life20. Sensitivity analyses are supportive 507 

for a growth-specific role of DLEU7. The association of genetic variants in DLEU7 with 508 

decline in FEV1 disappeared in analyses considering baseline lung function or restricted 509 

to subjects above age 30 with no remaining physiologic lung growth. There might be a 510 

link between physiologic growth and unregulated cell differentiation as the DLEU7 gene 511 

is also a proposed tumor suppressor gene in chronic lymphocytic leukemia53-55. 512 

Evidence emerges for a role of DLEU7 in counterbalancing the proliferative impact of 513 

NF-kB on various cell types56. The potential role of the gene product of TUSC3, a 514 

proposed tumor suppressor gene57, in lung physiology is discussed in the Online 515 

Repository.  516 

None of the SNPs identified in GWAS of cross-sectional lung function15-18 ranked high in 517 

this current GWAS on lung function decline. A strong risk factor for accelerated lung 518 

function decline in adulthood is cigarette smoking, but our study was too small to assess 519 

gene smoking interaction at the GWAS level. We had decided a priori against smoking 520 

adjustment as it is not a confounder, and any link between genotype and smoking is 521 

likely to be, at least in part, in the same causal pathway (e.g. gene products 522 

metabolizing tobacco constituents or influencing smoking behavior). Their identification 523 

as determinants of lung function decline is of public health importance. Consistent with 524 

previous GWAS on cross-sectional lung function15-18, neither the TUSC3 (heterogeneity 525 

between ever/never smokers P=0.98) nor other top hit signals were modified by 526 
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smoking except for SNPs in SYNE2, RORA, BCAS1 and PLXN4. Arguments for 527 

biologic plausibility are mentioned in the Online Repository. 528 

The strength of the present study is the longitudinal design of all cohorts included. 529 

Repeated spirometric assessments within the same subject is thought to capture more 530 

precisely exogenous factors and genes leading to accelerated loss of lung function in 531 

adulthood58. The discovery cohorts shared comparable questionnaire and spirometry 532 

protocols and they were specifically designed to investigate environmental and genetic 533 

causes of lung function decline and asthma in a standardized way. Each study has two 534 

measures of pre-bronchodilator lung function about ten years apart, but clearly our 535 

findings would be more robust if further lung function measures were available over an 536 

even longer period of follow-up. All discovery cohorts have used the same genotyping 537 

platform and stringent quality control criteria have been applied.  538 

Sample size is a limitation of this study, and remains a general challenge in lung 539 

function studies with a need for high phenotypic comparability as spirometry results are 540 

sensitive to technicians and devices used59. The pre-bronchodilation lung function 541 

measurements in our and previous lung function GWAS do not allow to differentiate 542 

reversible from non-reversible obstruction to airflow. Populations included in this study 543 

differed by age which is also reflected by the diverging proportion of subjects with 544 

FEV1/FVC <0.7 at follow-up between the discovery cohorts. Discovery and replication 545 

populations also differ by time spacing between the spirometry assessments. We can 546 

only speculate of on the overall impact of such differences. We do note that replication 547 

results were sensitive to the exclusion of ARIC data (the study with highest mean age, 548 

largest annual decline, and shortest follow-up time). 549 
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Other limitations are shared with any GWAS meta-analyses investigating complex 550 

phenotypes such as lack in power for investigating gene-environment interactions or 551 

studying subgroups of diseases. As the sample size of our study was comparatively 552 

small, especially for the asthmatic sample in the replication phase, we had limited ability 553 

to address differences in asthma sub-phenotypes or the impact of asthma medication 554 

intake. It is also likely that a substantial part of complex disease may be explained by 555 

rare mutations not considered by current GWAS. Finally, assessing the joint effect of 556 

SNPs having small effects individually and potentially interacting with each other 557 

remains another challenge. 558 

 559 

In conclusion, this first GWAS meta-analysis on lung function decline provides 560 

suggestive evidence for genetic heterogeneity between persons with and without 561 

asthma and between cross-sectionally and longitudinally measured lung function. 562 

Consistent with cross-sectional GWAS, our results are also suggestive of height related 563 

genes playing a role. Further studies in this area would be enhanced by greater 564 

comparability of age range, spacing of lung function assessments, and asthma sub-565 

phenotypes (including treatment) to decrease phenotypic heterogeneity and therefore 566 

increase statistical power to detect true association candidate loci60.  567 
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 818 

FIGURE LEGENDS: 819 

Figure I: Manhattan plots of association results for decline in lung function. A) FEV1 820 

decline in non-asthmatics. B) FEV1 decline in asthmatics. C) FEV1/FVC decline in non-821 

asthmatics. D) FEV1/FVC decline in asthmatics. 822 

 823 

Figure II: Association of the DLEU7 locus with decline in FEV1 in non-asthmatics. A) 824 

Regional association plot, discovery phase. B) Forest plot for rs9316500. A: 825 

Chromosome position (NCBI build 36.3) and recombination rate (hg18 build). The 826 

sentinel SNP is represented as a diamond and r2 for SNPs to the sentinel SNP 827 

(HapMap CEU phase II). B: The size of the square of each study reflects the 828 

contributing weight to the meta-analysis, details in Table EXI.  829 
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 830 

FOOTNOTES 831 

Footnotes to Table I: 832 

* N comprises the maximal number of subjects who contributed to at least one GWAS 833 

analysis (either decline in FEV1 or in FEV1/FVC). 834 

†Time spacing between the first and the second spirometry assessment. 835 

 836 

Footnote to Table II: 837 

* MUSK refers to TXN/MUSK/SVEP1 locus. 838 

 839 

Footnote to Table III: 840 

* Associations of SNPs previously associated in cross-sectional lung function in GWAS 841 

studies, (1) Framingham 15, (2) CHARGE 17, (3) Spirometa 16, (4) Asthmatics33 and (5) 842 

CHARGE-Spirometa18 were assessed in the discovery cohorts only if minor allele 843 

frequency (MAF) was at least 5%. SNPs tested for associations: ADAM19: rs2277027, 844 

rs1422795, rs6890282; ADCY2: rs7710510, rs6555465; ARMC2: rs2798641; C10orf11: 845 

rs11001819; CCDC38: rs1036429; CDC123: rs7068966; CFDP1: rs2865531; DAAM2: 846 

rs3008798, rs1318002, rs2395730; FAM13A1: rs6830970, rs2869967; GPR126: 847 

rs9496346, rs6570507, rs11155242, rs7753012, rs3748069, rs171891, rs263178; 848 

HDAC4: rs12477314; HHIP: rs1032295, rs1512285, rs720485, rs1828591, rs13118928, 849 

rs1512288, rs6817273; HTR4: rs3995090, rs1833710; INTS12-GSTCD-NPNT: 850 

rs3960769, rs17035917, rs17035960, rs11727735, rs10516526, rs11731417; KCEN2: 851 

rs9978142; LRP1: rs11172113; MECOM: rs1344555; MFAP2: rs2284746; MMP15: 852 
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rs2304488, rs12447804; MTMR3: rs17646919; NCR3: rs2857595; NOTCH4: rs206015; 853 

ONECUT1: rs2456526; PID1: rs1435867, rs1358443, rs3845823; PTCH1: rs10512249, 854 

rs576594; RARB: rs1529672; SPATA9: rs153916; TGFB2: rs993925; THSD4: 855 

rs12899618; THSD4: rs1568010, rs1913768; TNS1: rs918949, rs1035672, rs929937; 856 

ZKSCAN3: rs6903823. Non-significant associations reported in online repository. 857 

† Baseline cross-sectional lung function was calculated using Quanjer formula61.  858 

‡Proxies tested for cross-sectional association (r2, D’): for rs12447804 - rs2304488 859 

(0.87, 1); for rs12477314 - rs4521068 (1, 1); for rs2865531 - rs12917651 (1, 1). 860 
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TABLES 

Table I: Baseline characteristics of discovery and replication cohorts, by asthma status.  

     % mean ± SD mean ± SD mean ± SD (L) mean ± SD 

mean ± SD 

(y) 

mean ± SD 

(mL/y) 

mean ± SD 

(%/y) %  

Non-asthmatics 

 

 N* 

 

Men 

 

Age  

 

Height  

 

FEV1  

 

FEV1/FVC 

 

Follow-up 

length† 

 

annual decline 

FEV1 

 

annual 

decline 

FEV1/FVC 

 

Never 

smokers 

 

Discovery (ESE-cohorts)                  

EGEA 529 45.2 41.4 ±11.7 1.68 ±0.08 3.45 ±0.78 0.83 ±0.06 11.2 ±1.0 -28.6 ±25.7 -0.47 ±0.53 46.5 

SAPALDIA 805 49.2 41.8 ±11.1 1.70 ±0.09 3.62 ±0.81 0.79 ± 0.07 10.9 ±0.2 -34.0 ± 28.3  -0.40  ±0.46 43.1 

ECRHS 1343 49.7 34.1  ±7.1 1.70 ±0.10 3.81 ±0.83 0.83 ±0.06 8.9 ±0.9 -26.3 ±30.7 -0.30 ±0.50 40.7 

Replication with in silico data                  

ARIC 7156  46.3  54.5 ±5.6  1.69 ±0.09  3.01 ±0.75  0.75 ±0.07  2.9 ±0.2 -52.0 ±57.4 -0.19 ±0.98 40.8 

FHS  3232 44.9  52.9 ±10.2  1.67 ±0.10  2.89 ±0.81  0.77 ±0.08  10.5 ±3.6 -24.9 ±23.9 -0.33 ±0.57 36.1 

B58C 470  48.7 35.0 ±0.2 1.70 ±0.09 3.68 ±0.73 0.81 ±0.06 10.1 ±0.5 -34.9 ±31.4 -0.21 ±0.67 28.5 

            

Asthmatics           

            

Discovery (ESE-cohorts)                 

EGEA 330 50.6 38.5 ± 12.5 1.70  ±0.09 3.26 ±0.91 0.77  ±0.11 11.6 ± 1.0 -27.6 ±39.4 -0.44 ±0.68 44.6 

SAPALDIA 540 46.5 40.2 ± 11.3 1.69  ±0.09 3.36 ±0.89  0.76 ±0.95 10.9 ± 0.3  -35.5 ±33.9 -0.45  ±0.54 42.4 

ECRHS 571 42.7 33.9 ±7.3 1.69  ±0.10 3.43 ±0.81 0.78  ±0.09 8.8 ±0.7 -26.7 ±42.6 -0.20 ±0.60 42.5 

Replication with in silico data                  

ARIC 325  50.2  54.2 ±5.7 1.69 ±0.10  2.73 ±0.87  0.68 ±0.10  2.9 ±0.2 -43.9 ±77.2 -0.037 ±1.25 41.9 

FHS  346 41.3  50.1 ±10.3 1.68  ±0.09  2.72 ±0.84  0.73 ±0.09  10.2 ±3.8 -29.8 ±23.7 -0.38 ±0.51 36.1 

B58C 231 44.2 35.0 ±0.2 1.69  ±0.10 3.45 ±0.75 0.78 ±0.08 10.3 ±0.5 -34.4 ±37.6 -0.17 ±0.89 37.2 

Dutch Asthma 258 60.9 35.1 ±7.6 1.75 ±0.09 3.03 ±0.95 0.65 ±0.13 14.6 ±7.2 -22.8 ±47.0 -0.14 ±0.89 40.7 
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Table II: Association of (lead) SNPs subjected to replication with A) decline in FEV1 and B) decline in FEV1/FVC; stratified by asthma 

status. 

A - decline in FEV1 Discovery phase Replication phase 

dbSNP ID chr 
position    

(build 36.3) 

gene 

nearby 

Maximal 

frequency 

of coding 

allele 

Estimate 

of joint 

analysis  

P for joint 

analysis  

P for 

heterogeneity 

between 

studies 

P for 

heterogeneity 

between 

asthmatics and 

non-

asthmatics 

Estimate of 

joint 

analysis in 

replication 

cohorts 

P for joint 

analysis  

P for 

heterogeneity 

between  

between 

studies 

P for 

heterogeneity 

between 

asthmatics and 

non-asthmatics 

Non-Asthmatics                  

rs1889321 9 112340656 MUSK* 0.287 -0.150 6.95E-07 0.814 0.0187 -0.011 0.480 0.713 0.053 

rs9316500 13 49992115 DLEU7 0.336 0.135 4.81E-06 0.613 0.0255 0.033 0.026 0.124 0.075 

rs6785065 3 149016533 ZIC1 0.274 -0.136 0.00001 0.234 0.1700 -0.006 0.686 0.525 0.55 

rs278037 13 29322627 UBL3 0.178 -0.151 0.00002 0.364 0.0058 -0.006 0.734 0.231 0.50 

rs7641198 3 117396577 LSAMP 0.147 0.164 0.00003 0.669 0.1997 -0.002 0.939 0.690 0.15 

rs421847 21 19269950 PRSS7 0.281 0.128 0.00003 0.831 0.0350 -0.016 0.310 0.247 0.86 

rs496809 18 74857661 SALL3 0.078 -0.236 0.00004 0.412 0.0041 0.022 0.443 0.373 0.60 

rs10933964 3 110021881 TRAT1 0.499 -0.117 0.00006 0.345 0.0022 -0.015 0.265 0.869 0.041 

Asthmatics                  

rs10808265 7 131840229 PLXNA4B 0.484 -0.175 1.66E-06 0.844 0.0020 0.069 0.105 0.258 0.16 

rs1902618 15 58951491 RORA 0.234 -0.220 1.72E-06 0.449 0.0043 0.029 0.590 0.777 0.58 

rs3843306 1 91060718 BARHL2 0.460 0.176 5.11E-06 0.042 8.33E-06 0.047 0.270 0.883 0.24 

rs7006290 8 41734295 ANK1 0.319 0.185 5.19E-06 0.058 0.0003 0.038 0.456 0.574 0.45 

rs12436689 14 84723772 FLRT2 0.244 -0.212 6.87E-06 0.420 0.0010 -0.017 0.759 0.051 0.95 

rs12615721 2 81710037 CTNNA2 0.104 -0.303 7.65E-06 0.853 0.0020 -0.127 0.129 0.824 0.08 

rs10516809 4 89640109 HERC5 0.101 0.306 8.67E-06 0.790 3.60E-05 -0.060 0.446 0.200 0.41 

rs16856186 1 203944749 SLC45A3 0.098 0.268 8.92E-06 0.510 0.0034 -0.079 0.350 0.094 0.46 

rs158536 20 52148709 BCAS1 0.408 0.162 0.00002 0.948 0.0001 0.075 0.100 0.917 0.09 

rs477725 19 42066106 ZNF345 0.158 0.223 0.00003 0.821 0.0031 -0.069 0.273 0.255 0.14 

rs9662589 1 230344234 DISC1 0.221 0.188 0.00005 0.868 0.0002 -0.020 0.706 0.153 0.76 
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rs777433 2 128084705 LIMS2 0.407 0.151 0.00010 0.811 0.1223 -0.018 0.691 0.564 0.52 

                          

B - decline in FEV1/FVC 

 
Discovery phase Replication phase 

dbSNP ID chr 

position    

(build 36.3) 

gene    

nearby 

Maximal 

frequency 

of coding 

allele 

Estimate 

of joint 

analysis  

P for joint 

analysis  

P for 

heterogeneity 

between 

studies 

P for 

heterogeneity 

between 

asthmatics and 

non-

asthmatics 

estimate of 

joint 

analysis in 

replication 

cohorts 

P for joint 

analysis  

P for 

heterogeneity 

between  

between 

studies 

 P for 

heterogeneity 

between 

asthmatics and 

non-asthmatics 

Non-Asthmatics                  

rs2658782 11 92806379 FLJ25393 0.166 0.186 4.33E-06 0.362 0.0041 0.031 0.135 0.242 0.91 

rs1867982 10 73197053 C10orf54 0.109 0.202 5.56E-06 0.839 0.0034 -0.008 0.745 0.412 0.24 

rs12712969 2 46185673 PRKCE 0.268 -0.147 7.08E-06 0.687 0.0116 0.012 0.448 0.916 0.76 

rs10187654 2 234478798 TRPM8 0.205 0.151 8.87E-06 0.797 0.0049 -0.015 0.382 0.676 0.15 

rs356642 2 100903870 NPAS2 0.189 0.158 9.79E-06 0.162 0.0014 -0.010 0.565 0.282 0.28 

rs890515 8 67534388 ADHFE1 0.497 0.119 0.00001 0.580 0.0257 0.003 0.847 0.443 0.58 

rs10738890 9 32448081 DDX58 0.391 -0.118 0.00003 0.832 0.5847 -0.009 0.567 0.032 0.73 

Asthmatics                  

rs4831760 8 15576956 TUSC3 0.326 0.222 5.27E-08 0.066 7.74E-08 0.011 0.799 0.541 0.73 

rs7144584 14 63345565 SYNE2 0.116 -0.318 5.62E-07 0.616 0.0010 0.089 0.272 0.752 0.43 

rs1148186 10 28657641 MPP7 0.194 0.219 7.28E-06 0.760 0.0035 -0.033 0.602 0.967 0.60 
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Table III : Association* of SNPs previously identified in GWAS on cross-sectional lung function with percent predicted lung function at 

baseline, as well as percent change and annual decline in lung function for A) FEV1 and B) FEV1/FVC in ESE-discovery cohorts by 

asthma status. 

 

            

Non-Asthmatics 
  

Asthmatics 
  

A           

FEV1 percent 

predicted 

FEV1 percent 

change 

FEV1 

decline [%/y] 

FEV1 percent 

predicted 

FEV1 percent 

change 

FEV1 decline 

[%/y] 

dbSNP ID chr 

position    

(build 36.3) refs gene nearby 

Maximal 

frequency of 

coding allele P-value P-value P-value P-value P-value P-value 

rs1435867 2 229219173 2 PID1 0.065 0.021 0.845 0.418 0.824 0.321 0.377 

rs17035917 4 106740191 2,3 INTS12-GSTCD-NPNT 0.071 0.006 0.135 0.077 0.073 0.056 0.061 

rs17035960 4 106751295 2,3 INTS12-GSTCD-NPNT 0.071 0.004 0.093 0.054 0.067 0.056 0.063 

rs11727735 4 106851319 2,3 INTS12-GSTCD-NPNT 0.076 2.14E-04 0.361 0.198 0.057 0.114 0.074 

rs10516526 4 106908353 2,3 INTS12-GSTCD-NPNT 0.072 1.96E-04 0.327 0.177 0.062 0.120 0.078 

rs11731417 4 106965461 2,3 INTS12-GSTCD-NPNT 0.073 1.32E-04 0.335 0.177 0.048 0.146 0.090 

rs1032295 4 145654034 2 HHIP 0.397 0.173 0.096 0.306 0.274 0.042 0.033 

rs1512285 4 145670409   HHIP 0.462 0.032 0.029 0.141 0.152 0.033 0.024 

rs720485 4 145682038 2,3 HHIP 0.391 0.159 0.510 0.786 0.943 0.044 0.058 

rs1512288 4 145710731 2,3 HHIP 0.401 0.188 0.533 0.813 0.781 0.046 0.057 

rs6817273 4 145711453 2,3 HHIP 0.400 0.179 0.535 0.816 0.866 0.046 0.057 

rs3008798 6 39887840 3 DAAM2 0.464 0.326 0.960 0.850 0.755 0.009 0.017 

rs1318002 6 39892112 3 DAAM2 0.480 0.649 0.725 0.902 0.782 0.015 0.023 

rs2395730 6 39892343 3 DAAM2 0.442 0.522 0.716 0.513 0.619 0.003 0.007 

rs12899618 15 69432174 3 THSD4 0.158 0.003 0.003 0.014 0.424 0.137 0.131 

rs1913768 15 69436598 3 THSD4 0.159 0.003 0.002 0.011 0.393 0.162 0.152 

rs1568010 15 69455566 4 THSD4 0.372 0.535 0.042 0.067 0.413 0.241 0.111 

rs2304488 16 56631711 1 MMP15 0.186 0.033 0.101 0.147 0.112 0.344 0.506 

rs12447804‡ 16 56632783 5 MMP15 0.179 0.033 0.111 0.161 0.112 0.382 0.482 
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Non-Asthmatics 
  

Asthmatics  
  

B           

FEV1 percent 

predicted 

FEV1 percent 

change 

FEV1 

decline [%/y] 

FEV1 percent 

predicted 

FEV1 percent 

change 

FEV1 decline 

[%/y] 

dbSNP ID chr 

position    

(build 36.3) refs gene nearby 

Maximal 

frequency of 

coding allele P-value P-value P-value P-value P-value P-value 

rs918949 2 218382942 2,3 TNS1 0.384 0.010 0.133 0.089 0.076 0.241 0.256 

rs1035672 2 218383444 2,3 TNS1 0.384 0.010 0.133 0.089 0.093 0.243 0.258 

rs929937 2 218417460 2,4 TNS1 0.386 0.623 0.017 0.016 0.004 0.915 0.888 

rs3845823 2 229611365 4 PID1 0.432 0.039 0.963 0.852 0.393 0.997 0.987 

rs12477314‡ 2 239542085 5 HDAC4 0.215 0.023 0.727 0.655 0.125 0.361 0.278 

rs1529672 3 25495586 5 RARB 0.159 0.012 0.329 0.337 0.605 0.716 0.860 

rs1828591 4 145700230 2,3 HHIP 0.394 0.031 0.470 0.345 0.254 0.138 0.139 

rs13118928 4 145705839 2,3 HHIP 0.393 0.043 0.500 0.371 0.271 0.132 0.132 

rs3995090 5 147826008 2,3 HTR4 0.394 0.011 0.785 0.699 0.029 0.649 0.456 

rs2395730 6 39892343 3 DAAM2 0.442 0.277 0.554 0.685 0.979 0.036 0.039 

rs2798641 6 109374743 5 ARMC2 0.209 0.315 0.444 0.530 0.006 0.188 0.158 

rs9496346 6 142711031 2 GPR126 0.316 0.053 0.378 0.368 0.098 0.777 0.788 

rs6570507 6 142721265 2 GPR126 0.314 0.035 0.356 0.342 0.080 0.804 0.821 

rs11155242 6 142733242 2 GPR126 0.210 0.008 0.785 0.670 0.268 0.857 0.807 

rs7753012 6 142787576 2 GPR126 0.337 0.051 0.477 0.487 0.065 0.566 0.637 

rs3748069 6 142809326 2 GPR126 0.319 0.043 0.407 0.401 0.134 0.604 0.628 

rs171891 6 142892305 2,4 GPR126 0.198 0.013 0.884 0.741 0.129 0.830 0.815 

rs10512249 9 97296130 2 PTCH1 0.089 0.435 0.922 0.999 0.807 0.032 0.028 

rs11172113 12 55813550 5 LRP1 0.384 0.005 0.602 0.530 0.809 0.114 0.125 

rs1036429 12 94795559 5 CCDC38 0.217 0.765 0.322 0.356 0.295 0.047 0.031 

rs2456526 15 50876734 1 ONECUT1 0.136 0.011 0.524 0.500 0.451 0.230 0.250 

rs12899618 15 69432174 3 THSD4 0.158 3.25E-04 0.253 0.390 0.328 0.596 0.668 

rs1913768 15 69436598 3,4 THSD4 0.159 4.78E-04 0.221 0.344 0.365 0.617 0.695 

rs2304488 16 56631711 1 MMP15 0.186 0.121 0.002 0.002 0.085 0.760 0.515 

rs12447804‡ 16 56632783 5 MMP15 0.179 0.121 0.003 0.003 0.085 0.719 0.487 

rs2865531‡ 16 73947817 5 CFDP1 0.428 0.035 0.621 0.736 0.377 0.840 0.603 
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