P. Ratajczak, 358?369 expression and the development of cardiac hypertrophy. Cardiovasc isoforms in cardiac myocytes and endothelial cells, Cardiovascular Research J Biol Chem Res, vol.5751271, pp.709-71622810, 1996.

S. Woodman, D. Park, and A. Cohen, Caveolin-3 knock-out [23] Gkantiragas I Sphingomyelin-enriched mice develop a progressive cardiomyopathy and show hyperactivamicrodomains at the Golgi complex, Mol Biol Cell J Biol Chem, vol.1223, pp.1819-1861, 2001.

J. Michel, O. Feron, D. Sacks, T. Michel, K. Wary et al., Reciprocal regulation of [24 A requirement for endothelial nitric-oxide synthase by Ca21-calmodulin and caveolin. caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth, J Biol Chem Cell, vol.27294, pp.15583-15586625, 1997.

H. Drexler, R. Luetterforst, E. Stang, and N. Zorzi, Nitric oxide and coronary endothelial dysfunction in Molecular characterization of humans, Cardiovasc Res, vol.2543, pp.572-579, 1999.

O. Feron, C. Dessy, J. Desager, and J. Balligand, Hydroxycis-Golgi targeting domain in the caveolin molecule methylglutaryl-coenzyme A reductase inhibition promotes endotheli- 1999, J Cell Biol, vol.145, pp.1443-1459

M. Drab, P. Verkade, and M. Elger, Loss of caveolae Caveolin-3 null mice dysfunction, and pulmonary defects in caveolin-1 gene-disrupted show a loss of caveolae, changes in the microdomain distribution of mice, Science, vol.293, pp.27-2449, 2001.

B. Razani, J. Engelman, and X. Wang, Caveolin-1 null mice are, Biol Chem, vol.276, pp.21425-21433, 2001.

F. Galbiati, D. Volonte, and J. Chu, Transgenic overexpression of malities, in skeletal muscle fibers induces a Duchenne-like, pp.38121-38138, 2001.

R. Schwab, T. Okamoto, P. Scherer, and M. Lisanti, Analysis of the lar dystrophy phenotype? association of proteins with membranes. In: Current protocols in cell 9694, Proc Natl Acad Sci biology, vol.97, p.9689, 2000.

J. Silvestre, C. Heymes, and A. Oubenaissa, Activation of cardiac dystroglycan complex in caveolin-3-deficient limb girdle muscular aldosterone production in rat myocardial infarction: effect of andystrophy, Hum Mol Genet, vol.9, pp.2335-2340, 2000.

V. Rybin, X. Xu, M. Lisanti, and S. Steinberg, giotensin II receptor blockade and role in cardiac fibrosis. Circula- [30, receptor subtypes and adenylyl cyclase, pp.2694-2701, 1999.

G. Garcia-cardena, R. Fan, D. Stern, J. Liu, W. Sessa et al., Endothelial diomyocyte caveolae. A mechanism to functionally regulate the nitric oxide synthase is regulated by tyrosine phosphorylation and cAMP signaling pathway interacts with caveolin-1 Caveolin isoforms differ in their [19] Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a N-terminal protein sequence and subcellular distribution. Identificacalmodulin-requiring enzyme tion and epitope mapping of an isoform-specific monoclonal anti- 1990 body probe, J Biol Chem J Biol Chem Proc Natl Acad Sci J Biol Chem, vol.27527187270, pp.41447-4145727237, 1995.

H. Keita, J. Boczkowski, and A. Samb, Anesthetic concentrations of Reconstitution of an riluzole inhibit neuronal nitric oxide synthase activity, but not endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 expression, in the rat hippocampus, Brain Res, vol.32881, pp.237-240, 2000.

T. Raya, M. Gaballa, P. Anderson, and S. Goldman, Left ventricular lated displacement of eNOS from caveolin-1 function and remodeling after myocardial infarction in aging rats, J Biol Chem, vol.275, pp.22268-22272, 2000.

M. Mohri, K. Egashira, and T. Tagawa, Basal release of nitric oxide Endothelial nitric oxide is decreased in the coronary circulation in patients with heart failure. synthase targeting to caveolae, Specific interactions with caveolin Hypertension, vol.2230, pp.50-56, 1997.