T. Mita, K. Tanabe, and K. Kita, Spread and evolution of Plasmodium falciparum drug resistance, Parasitology International, vol.58, issue.3, pp.201-209, 2009.
DOI : 10.1016/j.parint.2009.04.004

J. Yuan, Chemical Genomic Profiling for Antimalarial Therapies, Response Signatures, and Molecular Targets, Science, vol.333, issue.6043, pp.724-729, 2011.
DOI : 10.1126/science.1205216

G. Mombo-ngoma, Phase I randomized dose-ascending placebo-controlled trials of ferroquine - a candidate anti-malarial drug - in adults with asymptomatic Plasmodium falciparum infection, Malaria Journal, vol.10, issue.1, p.53, 2011.
DOI : 10.1056/NEJM198801073180101

F. Dubar, In situ nanochemical imaging of label-free drugs: a case study of antimalarials in Plasmodium falciparum-infected erythrocytes, Chem. Commun., vol.145, issue.6, pp.910-912, 2011.
DOI : 10.1039/C1CC16211J

URL : https://hal.archives-ouvertes.fr/hal-00652186

C. Fitch, CHLOROQUINE RESISTANCE IN MALARIA: A DEFICIENCY OF CHLOROQUINE BINDING, Proceedings of the National Academy of Sciences, vol.64, issue.4, pp.1181-1187, 1969.
DOI : 10.1073/pnas.64.4.1181

P. Roepe, PfCRT-Mediated Drug Transport in Malarial Parasites, Biochemistry, vol.50, issue.2, pp.163-171, 2011.
DOI : 10.1021/bi101638n

T. Geary, J. Jensen, and H. Ginsburg, Uptake of [3H]chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum, Biochemical Pharmacology, vol.35, issue.21, pp.3805-3812, 1986.
DOI : 10.1016/0006-2952(86)90668-4

D. Krogstad, Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance, Science, vol.238, issue.4831, pp.1283-1285, 1987.
DOI : 10.1126/science.3317830

P. Bray, R. Howells, G. Ritchie, and S. Ward, Rapid chloroquine efflux phenotype in both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum, Biochemical Pharmacology, vol.44, issue.7, pp.1317-1324, 1992.
DOI : 10.1016/0006-2952(92)90532-N

A. Sidhu, D. Verdier-pinard, and D. Fidock, Chloroquine Resistance in Plasmodium falciparum Malaria Parasites Conferred by pfcrt Mutations, Science, vol.298, issue.5591, pp.210-213, 2002.
DOI : 10.1126/science.1074045

C. Sanchez, W. Stein, and M. Lanzer, Is PfCRT a channel or a carrier? Two competing models explaining chloroquine resistance in Plasmodium falciparum, Trends in Parasitology, vol.23, issue.7, pp.332-341, 2007.
DOI : 10.1016/j.pt.2007.04.013

R. Martin, Chloroquine Transport via the Malaria Parasite's Chloroquine Resistance Transporter, Science, vol.325, issue.5948, pp.1680-1682, 2009.
DOI : 10.1126/science.1175667

D. Fidock, Mutations in the P. falciparum Digestive Vacuole Transmembrane Protein PfCRT and Evidence for Their Role in Chloroquine Resistance, Molecular Cell, vol.6, issue.4, pp.861-871, 2000.
DOI : 10.1016/S1097-2765(05)00077-8

R. Cooper, Alternative Mutations at Position 76 of the Vacuolar Transmembrane Protein PfCRT Are Associated with Chloroquine Resistance and Unique Stereospecific Quinine and Quinidine Responses in Plasmodium falciparum, Molecular Pharmacology, vol.61, issue.1, pp.35-42, 2002.
DOI : 10.1124/mol.61.1.35

F. Dubar, The Antimalarial Ferroquine: Role of the Metal and Intramolecular Hydrogen Bond in Activity and Resistance, ACS Chemical Biology, vol.6, issue.3, pp.275-287, 2011.
DOI : 10.1021/cb100322v

URL : https://hal.archives-ouvertes.fr/hal-00595416

L. Casabianca, Quinine and Chloroquine Differentially Perturb Heme Monomer???Dimer Equilibrium, Inorganic Chemistry, vol.47, issue.13, pp.6077-6081, 2008.
DOI : 10.1021/ic800440d

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584347

S. Bohic, Biomedical applications of the ESRF synchrotron-based microspectroscopy platform, Journal of Structural Biology, vol.177, issue.2, pp.248-258, 2012.
DOI : 10.1016/j.jsb.2011.12.006

URL : https://hal.archives-ouvertes.fr/inserm-00855368

M. Henry, In Vitro Activity of Ferroquine Is Independent of Polymorphisms in Transport Protein Genes Implicated in Quinoline Resistance in Plasmodium falciparum, Antimicrobial Agents and Chemotherapy, vol.52, issue.8, pp.2755-2759, 2008.
DOI : 10.1128/AAC.00060-08

H. Ginsburg, O. Famin, J. Zhang, and M. Krugliak, Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action, Biochemical Pharmacology, vol.56, issue.10, pp.1305-1313, 1998.
DOI : 10.1016/S0006-2952(98)00184-1

A. Meister and M. Anderson, Glutathione, Annual Review of Biochemistry, vol.52, issue.1, pp.711-760, 1983.
DOI : 10.1146/annurev.bi.52.070183.003431

S. Kehr, N. Sturm, S. Rahlfs, J. Przyborski, and K. Becker, Compartmentation of Redox Metabolism in Malaria Parasites, PLoS Pathogens, vol.3, issue.12, p.1001242, 2010.
DOI : 10.1371/journal.ppat.1001242.s009

E. Patzewitz, E. Wong, and S. Müller, Dissecting the role of glutathione biosynthesis in Plasmodium falciparum, Molecular Microbiology, vol.420, issue.2, pp.304-318, 2012.
DOI : 10.1111/j.1365-2958.2011.07933.x

R. Summers, M. Nash, and R. Martin, Know your enemy: understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics. Cellular and Molecular Life Sciences: CMLS. Available at, 2012.

D. Lewis, Intracellular synchrotron nanoimaging and DNA damage/genotoxicity screening of novel lanthanide-coated nanovectors, Nanomedicine, vol.5, issue.10, pp.1547-1557, 2010.
DOI : 10.2217/nnm.10.96

URL : https://hal.archives-ouvertes.fr/inserm-00589259

D. Lewis, Intracellular synchrotron nanoimaging and DNA damage/genotoxicity screening of novel lanthanide-coated nanovectors, Nanomedicine, vol.5, issue.10, pp.1547-1557, 2010.
DOI : 10.2217/nnm.10.96

URL : https://hal.archives-ouvertes.fr/inserm-00589259

V. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.1, pp.63-68, 2007.
DOI : 10.1016/j.sab.2006.12.002