T. Alarcòn, H. M. Byrne, and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, vol.225, issue.2, pp.257-274, 2003.
DOI : 10.1016/S0022-5193(03)00244-3

A. R. Anderson and M. A. Chaplain, Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis, Bulletin of Mathematical Biology, vol.60, issue.5, pp.857-899, 1998.
DOI : 10.1006/bulm.1998.0042

K. Asaishi, B. Endrich, A. Gtz, and K. Messmer, Quantitative analysis of microvascular structure and function in the amelanotic melanoma a-mel-3, Cancer Res, vol.41, pp.1898-1904, 1981.

D. Balding and D. L. Mcelwain, A mathematical model of tumour-induced capillary growth, Journal of Theoretical Biology, vol.114, issue.1, pp.53-73, 1985.
DOI : 10.1016/S0022-5193(85)80255-1

K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors, Journal of Theoretical Biology, vol.241, issue.4, pp.903-918, 2006.
DOI : 10.1016/j.jtbi.2006.01.022

A. L. Bauer, T. L. Jackson, and Y. Jiang, A Cell-Based Model Exhibiting Branching and Anastomosis during Tumor-Induced Angiogenesis, Biophysical Journal, vol.92, issue.9, pp.3105-3121, 2007.
DOI : 10.1529/biophysj.106.101501

A. C. Burton, Rate of growth of solid tumours as a problem of diffusion, Growth, vol.30, pp.157-176, 1966.

H. M. Byrne, Dissecting cancer through mathematics: from the cell to the animal model, Nature Reviews Cancer, vol.85, issue.3, pp.221-230, 2010.
DOI : 10.1038/nrc2808

Y. Cai, S. Xu, J. Wu, and Q. Long, Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion, Journal of Theoretical Biology, vol.279, issue.1, 2011.
DOI : 10.1016/j.jtbi.2011.02.017

M. A. Chaplain, S. R. Mcdougall, and A. R. Anderson, MATHEMATICAL MODELING OF TUMOR-INDUCED ANGIOGENESIS, Annual Review of Biomedical Engineering, vol.8, issue.1, pp.233-257, 2006.
DOI : 10.1146/annurev.bioeng.8.061505.095807

C. Dedeugd, M. Wankhede, and B. S. Sorg, Multimodal optical imaging of microvessel network convective oxygen transport dynamics, Applied Optics, vol.48, issue.10, pp.187-197, 2009.
DOI : 10.1364/AO.48.00D187

M. Dellian, B. P. Witwer, H. A. Salehi, F. Yuan, and R. K. Jain, Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment, Am J Pathol, vol.149, pp.59-71, 1996.

H. B. Frieboes, M. E. Edgerton, J. P. Fruehauf, F. R. Rose, L. K. Worrall et al., Prediction of Drug Response in Breast Cancer Using Integrative Experimental/Computational Modeling, Cancer Research, vol.69, issue.10, pp.4484-4492, 2009.
DOI : 10.1158/0008-5472.CAN-08-3740

D. Fukumara and R. K. Jain, Imaging angiogenesis and the microenvironment???, APMIS, vol.7, issue.7-8, pp.695-715, 2008.
DOI : 10.1111/j.1600-0463.2008.01148.x

R. A. Gatenby, A. S. Silva, R. J. Gillies, and B. R. Frieden, Adaptive Therapy, Cancer Research, vol.69, issue.11, pp.4894-4903, 2009.
DOI : 10.1158/0008-5472.CAN-08-3658

D. Goldman and A. S. Popel, A Computational Study of the Effect of Capillary Network Anastomoses and Tortuosity on Oxygen Transport, Journal of Theoretical Biology, vol.206, issue.2, pp.181-194, 2000.
DOI : 10.1006/jtbi.2000.2113

H. P. Greenspan, Models for the growth of a solid tumour by diffusion, Stud Appl Math, vol.1, pp.317-340, 1972.

G. E. Koehl, A. Gaumann, and E. K. Geissler, Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies, Clinical & Experimental Metastasis, vol.173, issue.Suppl 1, pp.329-344, 2009.
DOI : 10.1007/s10585-008-9234-7

D. S. Lee, H. Rieger, and K. Bartha, Flow Correlated Percolation during Vascular Remodeling in Growing Tumors, Physical Review Letters, vol.96, issue.5, p.58104, 2006.
DOI : 10.1103/PhysRevLett.96.058104

H. A. Lehr, M. Leunig, M. D. Menger, D. Nolte, and K. Messmer, Dorsal skinfold chamber technique for intravital microscopy in nude mice, Am J Pathol, vol.143, pp.1055-1062, 1993.

P. Macklin, S. Mcdougall, A. Anderson, M. Chaplain, V. Cristini et al., Multiscale modelling and nonlinear simulation of vascular tumour growth, Journal of Mathematical Biology, vol.67, issue.2, pp.765-798, 2009.
DOI : 10.1007/s00285-008-0216-9

M. Maurin, O. Stephan, J. Vial, and B. Van-der-sanden, Deep in vivo two-photon imaging of blood vessels with a new dye encapsulated in pluronic nanomicelles, Journal of Biomedical Optics, vol.16, issue.3, p.36001, 2011.
DOI : 10.1117/1.3548879

URL : https://hal.archives-ouvertes.fr/inserm-00626015

S. R. Mcdougall, A. R. Anderson, and M. A. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies, Journal of Theoretical Biology, vol.241, issue.3, pp.564-589, 2006.
DOI : 10.1016/j.jtbi.2005.12.022

S. R. Mcdougall, M. A. Chaplain, A. S. Ephanou, and A. R. Anderson, Modelling the Impact of Pericyte Migration and Coverage of Vessels on the Efficacy of Vascular Disrupting Agents, Mathematical Modelling of Natural Phenomena, vol.5, issue.1, pp.1-41, 2010.
DOI : 10.1051/mmnp/20105108

URL : https://hal.archives-ouvertes.fr/hal-00847029

M. R. Owen, T. Alarcòn, P. K. Maini, and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, Journal of Mathematical Biology, vol.235, issue.2, pp.689-721, 2009.
DOI : 10.1007/s00285-008-0213-z

R. Paul, Flow-correlated dilution of a regular network leads to a percolating network during tumor-induced angiogenesis, The European Physical Journal E, vol.32, issue.1, pp.101-114, 2009.
DOI : 10.1140/epje/i2009-10513-8

H. Perfahl, H. M. Byrne, T. Chen, V. Estrella, T. Alarcn et al., Multiscale Modelling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions, PLoS ONE, vol.5, issue.S1, 2011.
DOI : 10.1371/journal.pone.0014790.s008

M. J. Plank, B. D. Sleeman, and P. F. Jones, A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins, Journal of Theoretical Biology, vol.229, issue.4, pp.435-454, 2004.
DOI : 10.1016/j.jtbi.2004.04.012

M. Pons-salort, B. Van-der-sanden, and A. Stéphanou, A Computational Framework to Assess the Efficacy of Cytotoxic Molecules and Vascular Disrupting Agents against Solid Tumours, Mathematical Modelling of Natural Phenomena, vol.7, issue.1, 2011.
DOI : 10.1051/mmnp/20127104

URL : https://hal.archives-ouvertes.fr/hal-00847022

A. R. Pries, T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross et al., Resistance to blood flow in microvessels in vivo, Circulation Research, vol.75, issue.5, pp.904-915, 1994.
DOI : 10.1161/01.RES.75.5.904

A. A. Qutub and A. S. Popel, Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting, BMC Systems Biology, vol.3, issue.1, 2009.
DOI : 10.1186/1752-0509-3-13

URL : http://doi.org/10.1186/1752-0509-3-13

T. W. Secomb, R. Hsu, E. Y. Park, and M. W. Dewhirst, Green's Function Methods for Analysis of Oxygen Delivery to Tissue by Microvascular Networks, Annals of Biomedical Engineering, vol.32, issue.11, pp.1519-1529, 2004.
DOI : 10.1114/B:ABME.0000049036.08817.44

A. Shirinifard, J. S. Gens, B. L. Zaitlen, N. J. Poplawski, M. Swat et al., 3D Multi-Cell Simulation of Tumor Growth and Angiogenesis, PLoS ONE, vol.56, issue.10, p.7190, 2009.
DOI : 10.1371/journal.pone.0007190.s003

A. Stéphanou, S. R. Mcdougall, A. R. Anderson, and M. A. Chaplain, Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies, Mathematical and Computer Modelling, vol.41, issue.10, pp.1137-1156, 2005.
DOI : 10.1016/j.mcm.2005.05.008

A. Stéphanou, S. R. Mcdougall, A. R. Anderson, and M. A. Chaplain, Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis, Mathematical and Computer Modelling, vol.44, issue.1-2, pp.96-123, 2006.
DOI : 10.1016/j.mcm.2004.07.021

C. L. Stokes and D. A. Lauffenburger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis, Journal of Theoretical Biology, vol.152, issue.3, pp.377-403, 1991.
DOI : 10.1016/S0022-5193(05)80201-2

S. Strieth, M. E. Eichhorn, B. Sauer, B. Schulze, M. Teifel et al., Neovascular targeting chemotherapy: Encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature, International Journal of Cancer, vol.32, issue.1, pp.117-124, 2004.
DOI : 10.1002/ijc.20083

S. Strieth, M. E. Eichhorn, A. Werner, B. Sauer, M. Teifel et al., Paclitaxel Encapsulated in Cationic Liposomes Increases Tumor Microvessel Leakiness and Improves Therapeutic Efficacy in Combination with Cisplatin, Clinical Cancer Research, vol.14, issue.14, pp.4603-4611, 2008.
DOI : 10.1158/1078-0432.CCR-07-4738

P. Tracqui, Biophysical models of tumour growth, Reports on Progress in Physics, vol.72, issue.5, p.56701, 2009.
DOI : 10.1088/0034-4885/72/5/056701

M. Welter, K. Bartha, and H. Rieger, Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, Journal of Theoretical Biology, vol.250, issue.2, pp.257-280, 2008.
DOI : 10.1016/j.jtbi.2007.09.031

M. Welter, K. Bartha, and H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, Journal of Theoretical Biology, vol.259, issue.3, pp.405-422, 2009.
DOI : 10.1016/j.jtbi.2009.04.005

URL : https://hal.archives-ouvertes.fr/hal-00554603

M. Welter and H. Rieger, Physical determinants of vascular network remodeling during tumor growth, The European Physical Journal E, vol.66, issue.2, pp.149-163, 2010.
DOI : 10.1140/epje/i2010-10611-6

F. T. Wu, M. O. Stefanini, F. M. Gabhann, and A. S. Popel, A Compartment Model of VEGF Distribution in Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap, PLoS ONE, vol.165, issue.2, 2009.
DOI : 10.1371/journal.pone.0005108.s002

X. Zheng, S. M. Wise, and V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bulletin of Mathematical Biology, vol.67, issue.2, pp.211-259, 2005.
DOI : 10.1016/j.bulm.2004.08.001